• Title/Summary/Keyword: Pilot Unit

Search Result 219, Processing Time 0.025 seconds

Pilot-Scale Testing of a Vibrating Electrostatic Separator for Fly Ash Decarbonization

  • Yoon, Roe-Hoan;Eric Yan;Han, Oh-Hyung;Park, Byung-Wook
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.644-649
    • /
    • 2001
  • A new electrostatic separator has been developed for the removal of unburned carbon from fly ash. In this separator, a flowing film of fly ash is created on the surface of a vibrating electrode. Conducting particles such as unburned carbon acquire electrostatic charges and jump out of the flowing film so that they can be removed from the non-conducting fly ash particles moving forward. The new separator has been tested successfully using a pilot-scale test unit at 0.5 tons/hr capacity. Based on the successful test results, a larger unit is being constructed at the present time.

  • PDF

Design on the interfacing between auto-pilot and water-jet drive system (Auto pilot 와 water jet drive system 간의 Interface 설계)

  • Jin, Hyong-Du;Choi, Jo-Cheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.535-538
    • /
    • 2009
  • Auto Pilot is the system which move automatically the vessel through locating operation mode to automatic after entering operating course using a electronic chart or plotter. And water jet is the a propulsion system that make a power to push the vessel through spouting the accelerated water which is absolbed by the hole in the bottom of vessel. The water jet receive the effect of the depth of water lowly, it's acceletion efficiency is higher under high speed and have an advantage on vibrating and floating sound, so it's demand is increasing as new propulsion system. However, the signal systems of auto Pilot and water jet are defferant, we need the system to communicate between each system. We propose the interface system which communicate between Auto pilot and water jet efficiently in this journal.

  • PDF

Vibration Powered Generator System for Stand-Alone Health Monitoring Sensor Unit (건전도 감시용 자립형 계측유닛을 위한 진동발전시스템)

  • 최남섭;김재민
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.85-92
    • /
    • 2003
  • This paper presents an electric power generating system for stand-alone health monitoring sensor unit of bridge structure based on ambient vibration of bridge. In this paper, a novel electric power generator which has minimum effect of armature reaction is proposed. The related mechanical and electrical design equations are obtained, and a pilot generator has been implemented. In addition, the charging system for extremely low generator current is discussed, and some improvements are identified for the system. This investigation reveals that diode characteristics of rectifier is dominant factor in the charging process. Finally, both the simulation, which uses real measurement data of the Namhae bridge as input of the pilot generator, and indoor test are carried out. The results showed the applicability and effectiveness of the stand-alone vibration powered generator.

A Structured and Multi-cellular Model of Starch Biosynthesis in Potato

  • Saithong, Treenut;Saraboon, Piyaporn;Meechai, Asawin;Cheevadhanarak, Supapon;Bhumiratana, Sakarindr
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.151-155
    • /
    • 2005
  • Recently, systems biology has been increasingly applied to gain insights into the complexity of living organisms. Many inaccessible biological information and hidden evidences fur example flux distribution of the metabolites are simply revealed by investigation of artificial cell behaviors. Most bio-models are models of single cell organisms that cannot handle the multi-cellular organisms like plants. Herein, a structured and multi-cellular model of potato was developed to comprehend the root starch biosynthesis. On the basis of simplest plant cell biology, a potato structured model on the platform of Berkley Madonna was divided into three parts: photosynthetic (leaf), non-photosynthetic (tuber) and transportation (phloem) cells. The model of starch biosynthesis begins with the fixation of CO$_2$ from atmosphere to the Calvin cycle. Passing through a series of reactions, triose phosphate from Calvin cycle is converted to sucrose which is transported to sink cells and is eventually formed the amylose and amylopectin (starch constituents). After validating the model with data from a number of literatures, the results show that the structured model is a good representative of the studied system. The result of triose phosphate (DHAP and GAP) elevation due to lessening the aldolase activity is an illustration of the validation. Furthermore, the representative model was used to gain more understanding of starch production process such as the effect of CO$_2$ uptake on qualitative and quantitative aspects of starch biosynthesis.

  • PDF

Energy and Air Quality Benefits of DCV with Wireless Sensor Network in Underground Parking Lots

  • Cho, Hong-Jae;Jeong, Jae-Weon
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.155-165
    • /
    • 2014
  • This study measured and compared the variation of ventilation rate and fan energy consumption according to various control strategies after installing wireless sensor-based pilot ventilation system in order to verify the applicability of demand-controlled ventilation (DCV) strategy that was efficient ventilation control strategy for underground parking lot. The underground parking lot pilot ventilation system controlled the ventilation rate by directly or indirectly tracking the traffic load in real-time after sensing data, using vehicle detection sensors and carbon monoxide (CO) and carbon dioxide ($CO_2$) sensor. The ventilation system has operated for 9 hours per a day. It responded real-time data every 10 minutes, providing ventilation rate in conformance with the input traffic load or contaminant level at that time. A ventilation rate of pilot ventilation system can be controlled at 8 levels. The reason is that a ventilation unit consists of 8 high-speed nozzle jet fans. This study proposed vehicle detection sensor based demand-controlled ventilation (VDS-DCV) strategy that would accurately trace direct traffic load and CO sensor based demand-controlled ventilation (CO-DCV) strategy that would indirectly estimate traffic load through the concentration of contaminants. In order to apply DCV strategy based on real-time traffic load, the minimum required ventilation rate per a single vehicle was applied. It was derived through the design ventilation rate and total parking capacity in the underground parking lot. This is because current ventilation standard established per unit floor area or unit volume of the space made it difficult to apply DCV strategy according to the real-time variation of traffic load. According to the results in this study, two DCV strategies in the underground parking lot are considered to be a good alternative approach that satisfies both energy saving and healthy indoor environment in comparison with the conventional control strategies.

Pilot Study on the Advanced Treatment of Combined Wastewater with Sewage as a Cosubstrate (가정하수를 cosubstrate로서 사용한 하수-염색폐수-공장폐수의 합병 고도처리 pilot plant 연구)

  • Kim, Mee-Kyung;Seo, Sang-Jun;Rhew, Doug-Hee;Jung, Dong-Il
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.227-234
    • /
    • 2009
  • In this research, a retrofitting process, which consists of a pretreatment system (coagulation) for dye wastewater combined with a biological nutrient system (MLE process using media), for a sewage treatment plant that has to treat dye wastewater efficiently with domestic wastewater were developed and a pilot plant was operated for verifying adoptability and performance of the developed advanced process for dye wastewater. From the results of the pilot plant operation, BOD 52.9%, $COD_{Cr}$ 55.9%, and color 71.3% were removed in pretreatment of coagulation process and the biodegradability of dye wastewater was improved to $0.32{\sim}0.59BOD/COD_{Cr}$ of the coagulated wastewater from $0.29{\sim}0.43BOD/COD_{Cr}$ of the raw dye wastewater. The final effluent concentrations were BOD of 8 mg/L, $COD_{Cr}$ of 43 mg/L, $COD_{Mn}$ of 18 mg/L, T-N of 8 mg/L, and T-P of 1.3 mg/L, respectively. Color was removed from 1655 to 468 unit by coagulation and then to 123 unit by MLE process. The HPLC analysis of aromatic amines in wastewater showed that decolorization was achieved by cometabolism while aromatic amines were produced by cleavage of azo bonds under anaerobic conditions and these products were removed in an aerobic tank subsequently. Nitrification rates of attached and suspended microorganisms were evaluated comparatively and the acclimating conditions of bacteria on media were validated by the scanning electron microscope.

Probing Starch Biosynthesis Enzyme Isoforms by Visualization of Conserved Secondary Structure Patterns

  • Vorapreeda, Tayvich;Kittichotirat, Weerayuth;Meechai, Asawin;Bhumiratana, Sakarindr;Cheevadhanarak, Supapon
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.215-220
    • /
    • 2005
  • Generally, enzymes in the starch biosynthesis pathway exist in many isoforms, contributing to the difficulties in the dissection of their specific roles in controlling starch properties. In this study, we present an algorithm as an alternative method to classify isoforms of starch biosynthesis enzymes based on their conserved secondary structures. Analysis of the predicted secondary structure of plant soluble starch synthase I (SSI) and soluble starch synthase II (SSII) demonstrates that these two classes of isoform can be reclassified into three subsets, SS-A, SS-B and SS-C, according to the differences in the secondary structure of the protein at C-terminus. SS-A reveals unique structural features that are conserved only in cereal plants, while those of SS-B are found in all plants and SS-C is restricted to barley. These findings enable us to increase the accuracy in the estimation of evolutionary distance between isoforms of starch synthases. Moreover, it facilitates the elucidation of correlations between the functions of each enzyme isoforms and the properties of starches. Our secondary structure analysis tool can be applicable to study the functions of other plant enzyme isoforms of economical importance.

  • PDF

Generation of Cutting Path Data for Two Steps of the Cutting Process in Full- Automated VLM-ST (VLM-ST 공정의 완전 자동화를 위한 2단계 절단 경로 데이터 생성 방법에 관한 연구)

  • 이상호;안동규;김효찬;양동열;박두섭;채희창
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.140-148
    • /
    • 2004
  • A novel rapid prototyping (RP) process, a full-automated transfer type variable lamination manufacturing process (Full-automated VLM-ST) has been developed. In the full-automated VLM-ST process, a vacuum chuck and a rectilinear motion system transfer the EPS foam material in the form of the plate with two pilot holes to the rotary supporting stage. The supplied material is then cut into an automated unit shape layer (AUSL) with a desired width, a desired length, a desired slope on the side surface, and a pair of reference shapes, which is called the guide shape (GS)’, including two pilot holes in accordance with CAD data through cutting in two steps using a four-axis synchronized hotwire cutter. Then, each AUSL is stacked by setting each AUSL with two pilot holes in the building plate with two pilot pins, and subsequently, adhesive is applied onto the top surface of the stacked AUSL by a bonding roller and pressure is simultaneously given to the bottom surface of the stacked AUSL. Finally, three-dimensional shapes are rapidly and automatically fabricated. This paper describes the method to generate guide shapes in AUSL data for the full-automated VLM-ST process. In order to examine the applicability of the method to generate guide shapes, three-dimensional shapes, such as a piston shape and a human head shape, are fabricated from the full-automated VLM-ST apparatus.

Development of a robust bench-scale testing unit for low-pressure membranes used in water treatment

  • Huang, Haiou;Schwab, Kellogg;Jacangelo, Joseph G.
    • Membrane and Water Treatment
    • /
    • v.2 no.2
    • /
    • pp.121-136
    • /
    • 2011
  • A bench-scale test has recently been proposed as a predictive tool to minimize the scope of pilot-scale testing or to optimize the operation of full-scale membrane filtration systems. Consequently, a bench-scale testing unit was developed for this purpose and systematically evaluated in this study. This unit was capable of accommodating commercially available, low pressure, hollow fiber (LPHF) membranes with various configurations for testing under conditions comparable to real-world applications. Reproducibility of this unit in assessing membrane fouling and microbial removal efficiency of LPHF membranes was tested and statistically comparable results were obtained. This unit serves as a useful apparatus for academic researchers and utilities to evaluate the performance of LPHF membranes used for water treatment.

Performance of fouled NF membrane as used for textile dyeing wastewater

  • Abdel-Fatah, Mona A.;Khater, E.M.H.;Hafez, A.I.;Shaaban, A.F.
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.111-121
    • /
    • 2020
  • The fouling of Nanofiltration membrane (NF) was examined using wastewater containing reactive black dye RB5 of 1500 Pt/Co color concentrations with 16890 mg/l TDS collected from El-alamia Company for Dying and Weaving in Egypt. The NF-unit was operated at constant pressure of 10 bars, temperature of 25℃, and flowrate of 420 L/min. SEM, EDX, and FTIR were used for fouling characterization. Using the ROIFA-4 program, the total inorganic fouling load was 1.07 mM/kg present as 49.3% Carbonates, 10.1% Sulfates, 37.2% Silicates, 37.2% Phosphates, and 0.93% Iron oxides. The permeate flux, recovery, salt rejection and mass transfer coefficients of the dye molecules were reduced significantly after fouling. The results clearly demonstrate that the fouling had detrimental effect on membrane performance in dye removal, as indicated by a sharp decrease in permeate flux and dye recovery 68%. The dye mass transfer coefficient was dropped dramatically by 34%, and the salt permeability increased by 14%. In this study, all the properties of the membrane used and the fouling that caused its poor condition are identified. Another study was conducted to regeneration fouled membrane again by chemical methods in another article (Abdel-Fatah et al. 2017).