• Title/Summary/Keyword: Pilot Plant Scale

Search Result 247, Processing Time 0.02 seconds

Odorous Gas Removal in Biofilter with Powdered Activated Carbon and Zeolite Coated Polyurethane Foam (분말활성탄 및 제올라이트 담지 폴리우레탄 담체를 이용한 바이오필터에서의 악취가스 제거)

  • Lee, Soo-Chul;Kim, Dong-Jin
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.209-215
    • /
    • 2012
  • The performance and removal efficiencies of a pilot scale biofilter were estimated by using ammonia and hydrogen sulfide as the odorous gases. Expanded polyurethane foam coated with powdered activated carbon and zeolite was used as a biofilm supporting medium in the biofilter. Odorous gases from the sludge thickener of a municipal wastewater treatment plant were treated in the biofilter for 10 months and the inlet ammonia and hydrogen sulfide concentrations were 0.1-1.5 and 2-20 ppmv, respectively. The removal efficiencies reached about 100% at the empty bed retention time (EBRT) of 3.6-5 seconds except for the adaptation periods. The pressure drop of the biofilter caused by the gas flow was also low that the maximum attained was 31 mm $H_2O$ during the operation. Its stability was confirmed in the long term due to the fact that the biofilter and the polyurethane medium had a minimum plugging and compression. The microbial community on the medium is critical for the performance of the biofilter especially the distribution of ammonia oxidizing bacteria (AOB) and sulfur oxidizing bacteria (SOB). The distribution of Nitrosomonas sp. (AOB) and Thiobacillus ferroxidans (SOB) was confirmed by FISH (fluorescence in situ hybridization) analysis. The longer the operation time, the more microbial population observed. Also, the medium close to the gas inlet had more microbial population than the medium at the gas outlet of the biofilter.

Removal Characteristics of Natural Organic Matter and Taste and Odor by Advanced Water Treatment Process around the Han River Water Supply System (한강수계 고도정수처리 공정에서의 유기물과 맛·냄새의 제거특성)

  • Jae-Lim Lim;Lee, Kyung-Hyuk;Kim, Seong-Su;Chae, Seon-Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.13-25
    • /
    • 2007
  • The water treatment plants in Seoul Metropolitan Area, which are under Korea Water Resources Corporation(KOWACO)'s management, take water from Paldang Reservoir in Han River System for drinking water supply. There are taste and odor (T&O) problems in the finished water because the conventional treatment processes do not effectively remove the T&O compounds. As part of countermeasures for taste and odor control, KOWACO is planning to introduce advanced water treatment process such as ozone and GAC in near future. This study evaluated the removal characteristics of T&O and dissolved organic matter (DOM) to find design and operation parameters of advanced water treatment processes in a pilot-scale treatment plant. The GAC adsorption capacity for DOC in the two GAC system (GAC and $O_3$-GAC) at an EBCT of 14min was mostly exhausted after 9months. The differency of the removal efficiency of DOC between $O_3$-GAC and GAC increased with increasing operation time because the bioactivity in $O_3$-GAC process was enhanced by post-ozone process. Removal by conventional treatment was unable to reach the target TON(threshold odor number) of 3 but GAC systems at an EBCT(empty bed contact time) of 14 min were able to archive the target with few exception. During the high T&O episodes, PAC as a pretreatment together with GAC could be useful option for T&O control. However, substantial TON removal continued for more than two year (> 90,000 bed volumes). At the spiking of less concentration 26 to 61 ng/L in the influent of GAC systems, GAC absorber and $O_3$-GAC processes could meet the treatment target. The better spike control after 12 and 19 months of operation compared to that after 7 months of operation is a strong indication of biological control. The results presented in this study had shown that $O_3$-GAC process was found to be more effective for T&O control than GAC process. And the main removal mechanism in GAC systems were adsorption capacity and biodegradation.

Impact Assessment of Climate Change by Using Cloud Computing (클라우드 컴퓨팅을 이용한 기후변화 영향평가)

  • Kim, Kwang-S.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.2
    • /
    • pp.101-108
    • /
    • 2011
  • Climate change could have a pronounced impact on natural and agricultural ecosystems. To assess the impact of climate change, projected climate data have been used as inputs to models. Because such studies are conducted occasionally, it would be useful to employ Cloud computing, which provides multiple instances of operating systems in a virtual environment to do processing on demand without building or maintaining physical computing resources. Furthermore, it would be advantageous to use open source geospatial applications in order to avoid the limitations of proprietary software when Cloud computing is used. As a pilot study, Amazon Web Service ? Elastic Compute Cloud (EC2) was used to calculate the number of days with rain in a given month. Daily sets of climate projection data, which were about 70 gigabytes in total, were processed using virtual machines with a customized database transaction application. The application was linked against open source libraries for the climate data and database access. In this approach, it took about 32 hours to process 17 billion rows of record in order to calculate the rain day on a global scale over the next 100 years using ten clients and one server instances. Here I demonstrate that Cloud computing could provide the high level of performance for impact assessment studies of climate change that require considerable amount of data.

Evaluation of Bio-Chemical Restoration Index at the Creation Site of Ecological Environmental Zone in Coastal Area (연안생태환경공간 조성지의 생물-화학적 복원지수 평가)

  • Lee, In-Cheol;Yi, Byung Ho;Park, So Young;Ryu, Cheong Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.161-168
    • /
    • 2008
  • The ecological environmental zones in coastal area, like tidal flat and salt marsh, were gradually decreased due to large scale of coastal development projects, reclamation and so on. Therefore, the development of artificial tidal flat and salt marsh has been emphasized in coastal area as mitigation concept and studies on related this background has performed. But studies on the quantitative evaluation for degree of restoration were insufficient. In this paper, as a fundamental study for evaluation of restoration on the creation of ecological environmental zones in coastal area, it was conducted that the monitoring and experiment for bio-chemical factors (bio-diversity, population and biomass of macro-benthos, survival ratio of reed, the number of heterotrophic bacteria and physico-chemical characteristics such as COD, IL, TN, TP and pH) using a in-situ pilot plant of tidal flat (Zone. P1) and salt marsh (Zone. P2), which was distinguished by content of dredged soil, in Jinudo, Nakdong estuary. From results of this study, the restoration index (RI), for evaluation concerning degree of restoration on the creation of ecological environmental zones in coastal area, was suggested and quantitative evaluation was performed using a restoration index (RI).

Alcoholic Fermentation of Traditional Kanjang by Semi-pilot Scale Bioreactor Systems (Semi-pilot plant 규모 bioreactor를 이용한 재래식 간장의 알코올발효)

  • Kwon, Kwang-Il;Lee, Jong-Gu;Choi, Jong-Dong;Chung, Hyun-Chae;Ryu, Mun-Kyun;Im, Moo-Hyeog;Kim, Ki-Ju;Choi, Yong-Hoon;Kim, Young-Ji;Choi, Cheong;Choi, Kwang-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.103-110
    • /
    • 2003
  • Stable production of fermented kanjang containing 1.8% (v/v) ethanol was obtained within four days using traditional kanjang containing 4% added glucose in packed-bed bioreactor systems filled with immobilized Zygosaccharomyces rouxii and Candida versatilis on porous alumina ceramic bead carrier at $28{\pm}0.5^{\circ}C$ and aeration rate of 0.05 vvm. Specific rates of alcohol production for Z. rouxii and C. versatilis were 0.0033 and 0.0031/day, respectively, and those of glucose consumption were both -0.0087/day in the batch type of alcoholic fermentation. In semi-continuous alcoholic fermentation at a dilution rate of 0.25/day, specific rates of alcohol production for Z. rouxii and C. versatilis were 0.0045 and 0.0029/day, and those of glucose consumption were -0.01 and -0.008/day, respectively, using identical bioreactor system. Similar specific rates of alcohol production were observed both in the batch or semi-continuous process and in the continuous one at the dilution rate of 0.25/day. Sensory characteristics of all alcoholic-fermented kanjang by Z. rouxii, C. versatilis, and a mixture of both yeasts (2:1, w/w) were shown to be significantly superior to those of home-made kanjang as revealed through organoleptic evaluation tests (p<0.05).

Treatment of N, P of Auto-Thermal Thermophilic Aerobic Digestion Filtrate with Struvite Crystallization (Struvite 결정화 반응을 이용한 고온 소화 여과액의 N, P 처리 특성)

  • Choo, Yeon-Duk;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.783-789
    • /
    • 2011
  • Recently, auto-thermal thermophilic aerobic digestion (ATAD) has a great attention for destruction of wasted sludge biomass in wastewater treatment plant. Reduction of sludge concentration has been successfully achieved with pilot scale ATAD and ceramic filtration process in field condition. However, high concentration of COD, total nitrogen (TN) and total phosphorus (TP) was observed in filtrate, which should be treated before recirculation of filtrate to biological wastewater treatment plant. This study was focused on removal of nitrogen and phosphorus contained in the filtrate of ATAD, using struvite crystallization method. The effect of operational and environmental parameters (such as, N, P and Mg ion concentration and molar ratio, pH, reaction time, agitation strength, seed dosage, and reaction temperature) on the treatment of TN and TP with struvite crystallization were evaluated. Magnesium (as $MgCl_26H_2O$) and phosphorus (as $K_2HPO_4$) ions were, if necessary, added to increase nitrogen removal efficiency by the crystal formation. Average concentration of $NH_4^+-N$ and $PO_4^{3-}-P$ of the filtrate were 1716.5 mg/L and 325.5 mg/L, respectively. Relationship between removal efficiencies of nitrogen and phosphorus and molar ratios of $Mg^{2+}$ and $PO_4^{3-}-P$ to $NH_4^+-N$ was examined. Crystal formation and nitrogen removal efficiencies were significantly increased as increasing molar ratios of magnesium and phosphorus to nitrogen. As molar ratio of $Mg^{2+}:PO_4^{3-}-P:NH_4^+-N$ were maintained to 2 : 1 : 1 and 2 : 2 : 1, removal efficiencies of nitrogen and phosphorus were 71.6% and 99.9%, and 93.8% and 98.6%, respectively. However, the effect of reaction time, mixing intensity, seed dose and temperature on the struvite crystallization reaction was not significant, comparing to those of molar ratios. Settled sludge volume after struvite crystallization was observed to be reduced with increase of seed dose and to be increased at high temperature.

Performance Characteristics of Agitated Bed Manure Composting and Ammonia Removal from Composting Using Sawdust Biofiltration System (교반식 축분 퇴비화 및 톱밥 탈취처리 시스템의 퇴비화 암모니아 제거 성능)

  • Hong, J.H.;Park, K.J.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.1
    • /
    • pp.13-20
    • /
    • 2007
  • Sawdust biofiltration is an emerging bio-technology for control of ammonia emissions including compost odors from composting of biological wastes. Although sawdust is widely used as a medium for bulking agent in composting system and for microbial attachment in biofiltration systems, the performance of agitated bed composting and sawdust biofiltration are not well established. A pilot-scale composting of hog manure amended with sawdust and sawdust biofiltration systems for practical operation were investigated using aerated and agitated rectangular reactor with compost turner and sawdust biofilter operated under controlled conditions, each with a working capacity of approximately $40m^3\;and\;4.5m^3$ respectively. These were used to investigate the effect of compost temperature, seed germination rate and the C/N ratio of the compost on ammonia emissions, compost maturity and sawdust biofiltration performance. Temperature profiles showed that the material in three runs had been reached to temperature of 55 to $65^{\circ}C$ and above. The ammonia concentration in the exhaust gas of the sawdust biofilter media was below the maximum average value as 45 ppm. Seed germination rate levels of final compost was maintained from 70 to 93% and EC values of the finished compost varied between 2.8 and 4.8 ds/m, providing adequate conditions for plant growth.

  • PDF