• Title/Summary/Keyword: Pilot Design

Search Result 963, Processing Time 0.032 seconds

공군 전투조종사 비행복 착용특성 및 만족도 조사 (Research on Actual Usage and Satisfaction of ROKAF Fighter Pilot's Flight Duty Uniform)

  • 이아람;남윤자;홍유화;임소정;임채근
    • 한국의류학회지
    • /
    • 제40권4호
    • /
    • pp.669-684
    • /
    • 2016
  • This study investigates Korean fighter pilot's usage and satisfaction of a flight duty uniform (FDU). The survey was conducted from October 2014 to March 2015 using Focus Group Interview (FGI) and questionnaires. FGI collected qualitative data about duty and requirements; subsequently, surveys were performed to collect quantitative data about wearing conditions and satisfaction with FDU. The results of the FGI and the questionnaire were as follows. Type of pilot duty was divided into two parts, flight duty and ground duty. It is important to consider duties as well as factors related to survival when developing FDU. According to anthropometric data and wearing size, the basic size for apparel grading should be changed from actual size, 'M95XL' to 'M100L'. It is also necessary to improve the whole sizing system. Further studies about body form changes in pilot's movement are needed to improve mobility because the respondents perceived some restrictions at several body parts in movement with the coverall uniform. Summer FDU had a low satisfaction level in vent hole function and appearance. Furthermore, protection problems in the vent hole were also an issue. Making a seasonal classification of FDU fabric will be more effective than a vent hole to increase a pilot's thermal satisfaction. Respondents had a passive stance towards FDU reform (including pocket change); therefore, a new FDU design strategy should concentrate on improving current FDU functions like mobility (or comfort) rather than dramatic changes. Pilots complained about the quality stability of FDU; therefore, quality control by military administration as well as concrete and clear design instructions by the developer should be attained together. The results obtained in this study are expected to be used as an important basis for the further development of FDU.

압축 채널 센싱 기반 OFDM 시스템에서 PAPR 감소를 위한 파일럿 톤 설계 방법 (Pilot Tone Design for PAPR Reduction in OFDM Systems Based on Compressed Channel Sensing)

  • 장민호;김기훈
    • 한국통신학회논문지
    • /
    • 제40권5호
    • /
    • pp.806-808
    • /
    • 2015
  • 본 논문은 최근 주목받고 있는 압축 센싱(compressed sensing) 기반으로 직교 주파수 분할 다중화 (OFDM; orthogonal frequency division multiplexing) 신호의 파일럿 톤을 효율적으로 설계하여 최대 전력대 평균 전력 비율 (PAPR; peak to average power ratio)을 감소시키는 방법을 제안한다.

항공기의 고도, 속도 및 깊은 실속의 회복을 위한 자동회복장치 설계 및 검증에 관한 연구 (A Study on the Design and Validation of Automatic Pitch Rocker System for Altitude, Speed and Deep Stall Recovery)

  • 김종섭
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.240-248
    • /
    • 2009
  • Modem version of supersonic jet fighter aircraft must have been guaranteed appropriate controllability and stability in HAoA(High Angle of Attack). The HAoA flight control law have two parts, one is control law of departure prevention and the other is control law of departure recovery support. The control laws of departure prevention for advanced jet trainer consist of HAoA limiter, roll command limiter and rudder fader. The control laws of departure recovery support are consist of yaw-rate limiter and MPO(Manual Pitch Override) mode. The guideline of pitch rocking using MPO mode is simple, but operating skill of pitch rocking is very difficult by the pilot with inexperience of departure situation. Therefore, automatic deep stall recovery system is necessary. The system called the "Automatic Pitch Rocker System" or APRS, provided a pilot initiated automatic maneuver capable of an aircraft recoveries in situations of deep stall, speed and altitude. This paper addresses the design and validation for APRS to recovery of an deep stall without manual pitch rocking by the pilot. Also, this system is designed to recovery of speed, attitude and altitude after deep stall recovery using ATCS (Automatic Thrust Control System) and autopilot. Finally, this system is verified by real-time pilot evaluation using HQS (Handling Quality Simulator).

커먼레일식 디젤기관의 부분 예혼합 분사시기가 연소 및 배기특성에 미치는 영향 (The Effects of Partially Premixed Pilot Injection Timing on the Combustion and Emission Characteristics in a Common Rail Diesel Engine)

  • 윤삼기;최낙정
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.18-24
    • /
    • 2013
  • An experimental study was performed to investigate the characteristics of combustion pressure and exhaust emissions when the pilot injection timing and EGR rate were changed in a CRDI 4-cylinder diesel engine. The pilot injection timing and EGR rate have a significant impact on the combustion and emission characteristics of diesel engine. In this study, the pilot injection timing and EGR rate variation were conducted to 2000rpm of engine speed with torque 50Nm. Combustion pressure and heat release rate were decreased under high EGR rate conditions but increased under the pilot injection timing $20^{\circ}$(BTDC). IMEP and the maximum pressure in cylinder(Pmax) were decreased under the same injection timing with the increase of EGR rate. The NOx emission was decreased with increasing the EGR rate. On the other hand, in the same injection timing conditions, CO, HC, $CO_2$ emissions were increased with increasing the EGR rate.

Deep CNN based Pilot Allocation Scheme in Massive MIMO systems

  • Kim, Kwihoon;Lee, Joohyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권10호
    • /
    • pp.4214-4230
    • /
    • 2020
  • This paper introduces a pilot allocation scheme for massive MIMO systems based on deep convolutional neural network (CNN) learning. This work is an extension of a prior work on the basic deep learning framework of the pilot assignment problem, the application of which to a high-user density nature is difficult owing to the factorial increase in both input features and output layers. To solve this problem, by adopting the advantages of CNN in learning image data, we design input features that represent users' locations in all the cells as image data with a two-dimensional fixed-size matrix. Furthermore, using a sorting mechanism for applying proper rule, we construct output layers with a linear space complexity according to the number of users. We also develop a theoretical framework for the network capacity model of the massive MIMO systems and apply it to the training process. Finally, we implement the proposed deep CNN-based pilot assignment scheme using a commercial vanilla CNN, which takes into account shift invariant characteristics. Through extensive simulation, we demonstrate that the proposed work realizes about a 98% theoretical upper-bound performance and an elapsed time of 0.842 ms with low complexity in the case of a high-user-density condition.

불활성기체로 희석된 동축류 확산화염의 파일럿화염에 의한 안정화 (Stabilization of Inert-Gas-Diluted Co-Flow Diffusion Flame by a Pilot Flame)

  • 안태국;이원남;박선호
    • 한국연소학회지
    • /
    • 제20권4호
    • /
    • pp.19-25
    • /
    • 2015
  • An experimental study was conducted to find the effect of a pilot flame on the flammability of inert-gas-diluted methane and propane. The diffusion pilot flame was formed with propane at the innermost nozzle of a concentric triple co-flow burner. The main diffusion flame was formed with nitrogen-diluted methane or propane at the outermost nozzle of the burner. An air flow was located in-between. The results showed that the existence of the pilot flame helped stabilizing the main flame even at the flammability limit concentration of nitrogen-diluted fuel. The co-flow burner generated re-circulation zones and local variation of equivalence ratio depending on the flow rates of the reactants, which are known to help flame stabilization. Hot-wire experiments confirmed that both heating of the reactants and supplying of active chemical species by the pilot flame contributed to stabilization of the main flame. The results of this study would suggest a design concept for an efficient SVRU system that minimizes the emission of unburned hydrocarbon fuel from ship fuel tanks.

Auto pilot 와 water jet drive system 간의 Interface 설계 (Design on the interfacing between auto-pilot and water-jet drive system)

  • 진형두;최조천
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 춘계학술대회
    • /
    • pp.535-538
    • /
    • 2009
  • Auto Pilot은 전자해도나 플로터를 이용하여 항행하고자 하는 코스를 입력 시킨 후 운행모드를 자동운항에 위치시키면 자동으로 경로를 따라 선박을 이동시키는 시스템이다. Water Jet 추진장치는 엔진과 연결된 펌프를 가동해 배 밑바닥에 있는 흡입구로부터 물을 빨아들인 후에 배 내부에 설치된 유도관을 거쳐 노즐을 통해 가속된 물을 배 뒤쪽으로 분사하면서 배를 앞으로 밀어주는 힘을 발생시키는 추진 장치다. Water Jet 추진장치는 수심의 영향이 적고, 고속영역 일수록 추진 효율이 높고 진동과 유동소음 측면에서도 매우 유리한 장점을 갖고 있어 새로운 추진시스템으로 국내외 적으로 수요가 확대되고 있다. 하지만 Auto Pilot 와 Water Jet 추진시스템의 신호 체계가 달라 상호간 효과적으로 신호를 전달할 수 있는 장치가 필요하다. 본 논문은 기존의 Auto Pilot 와 Water Jet 추진시스템의 신뢰성 있는 통신을 할 수 있도록 상호 연동하는 Interface 장치를 설계하였다.

  • PDF

신속한 주물 시제품 개발을 위한 전산모사 기술과 산업용 단층촬영기 및 쾌속표형기의 적용 (The Application of Computer Simulation, Industrial CT and DLS RP for the rapid development of casting pilot models)

  • 유승목;임채호;조인성;최정길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.195-196
    • /
    • 2006
  • Direct laser sintering (DLS) technology for the resign coated sand is one of attractive technologies to produce molds and cores for the foundry industry rapidly and cost effectively. The objective of this case study is to develop casting pilot models using computer simulation technology, DLS RP machine and industrial computed tomography. The proposed casting design was verified by the Z-Cast software in the fields of fluid flow and solidification during the casting process. Casting parts with aluminum alloy using the post-curing treated sand moulds and cores are accurate to dimension and defect free.

  • PDF

Pilot 규모의 열분해 용융 소각 시스템에서의 열분해 및 연소 특성 연구 (A Study on the Pyrolysis and Combustion Characteristics of Solid Waste in a Pilot scale Pyrolysis Melting Incinerator)

  • 류태우;양원;박주원;김봉근;이기방;김희열;박상신;전금하
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.168-174
    • /
    • 2006
  • A pilot scale (200kg/hr) pyrolysis melting incineration system is designed and constructed in Korea Institute of Industrial Technology. The incineration process is composed of pyrolysis, gas combustion, ash melting, gas stabilization, waste heating boiler, and bag filter. For each unit process, experimental approaches have been conducted to find optimal design and operating conditions. Especially, a pyrolysis is very important process in that it is a way of energy recirculation and minimizing the waste products. This paper presents major results of the most efficient operating conditions in a pilot scale pyrolysis melting incinerator.

  • PDF

조종자 입력패턴을 활용한 RIB형 무인선의 침로제어기 설계 (Design of Course Keeping Controller for RIB-type USV Using a Pilot's Steering Pattern)

  • 윤근항;여동진;윤현규
    • 대한조선학회논문집
    • /
    • 제47권3호
    • /
    • pp.462-468
    • /
    • 2010
  • A new course keeping controller for RIB(Rigid Inflatable Boat)-type USV(Unmanned Surface Vehicle) is developed using pilot's steering pattern. A pilot's simple steering pattern is found out from various course change tests. It is used to course keeping algorithm, suitable for large course change more than 60 degrees. To validate the course keeping controller, sea trial tests are conducted. From sea trial test, new course keeping controller shows good performance with less overshoot, maximum roll angle less than $20^{\circ}$, which makes it possible that fast course changes without slip motion of USV.