• Title/Summary/Keyword: Piling Noise

Search Result 30, Processing Time 0.021 seconds

A Study on the Skin Friction Characteristics of SIP(Soil-cement Injected Precast Pile) (SIP 말뚝의 주면마찰 특성에 관한 연구)

  • 천병식;임해식;강재모;김도형;지원백
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.583-588
    • /
    • 2002
  • As environmental problem in course of construction has been a matter of interest, noise and vibration in the process of piling are considered as a serious problem. For this reason, the use of SIP method inserting pile as soon as boring and cement grouting is rapidly increasing for preventing vibration and noise. But a resonable bearing capacity formula for SIP method does not exit and even the standard specification for domestic condition isn't formed, though the lateral friction between cement paste and the ground does an important role and boring depth largely influences to the design bearing capacity, applying the SIP method . Therefore, the lateral friction was analyzed after the direct shear test worked with the lateral face of SIP and the soil.

  • PDF

A Study on Data Analysis of Ground Vibration.Noise Dust Dispersion Measurement for Enhancing Safety at the Construction Sites - Focussed on Blasting and Piling in Sedimentary and Igneous Rocks in the Youngnam Area - (건설 현장에서 안전성 향상을 위한 지반진동.소음.비산먼지 측정자료의 분석에 관한 연구 -영남지역의 퇴적암.화성암층에서의 발파 및 항타작업을 중심으로-)

  • 안명석;류창하;박종남
    • Explosives and Blasting
    • /
    • v.19 no.3
    • /
    • pp.91-104
    • /
    • 2001
  • As in Korean environments with mountainous and hilly areas, the rock generally has to be removed in construction or civil engineering work in tunnelling or excavation for development in urban area. Explosives should be used for blasting, which may cause serious problems on local people for their claim for compensation due to ground vibration, noise. For safe and economic blasting, geology and engineering characteristics of rocks such as discontinuities of rock or weathering are very important factors, together with site characteristics for prediction of ground vibration. In this study, conducted were the detailed study for major rocks most widely distributed in the South-east area, in-situ geological survey, geological and geochemical analysis, and further laboratory uniaxial rock stress, seismic velocity of core samples together with in-situ seismic velocity measurements. Regulations on ground vibration and noise were reviewed for assessing their adaptabilities, and a total of 4,856 measured blasting vibration data were examined for enhancing the confidence level in estimating the predictive formulation using scaled distance statistically.

  • PDF

Bearing Capacity Characteristics of SIP Piles (SIP 공법의 지지력 특성에 관한 연구)

  • 박종배;김정수;정형식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.51-60
    • /
    • 2003
  • As piling works in urban area are increasing, SIP which has low noise & vibration piling method takes the place of driven pile which has good bearing charateristics and is economical. Although SIP has been used far more than 15 years and it's use is increasing year by year, accurate analysis of bearing mechanism of SIP is not enough. So the design of SIP is much more conservative than driven pile. This paper is aimed at analysing the bearing charateristics of 103 SIPs constructed in Korea to give rational design criteria. Research result shows that bearing capacity of SIP is 40% lower than that of driven pile and conservative Meyerhof(20$\bar{N}_b'A_b$) method produced closer result to load test results than any other design method. And this result shows that in order to use optimised design criteria for the economical SIP design, quality control criteria must be settled down to produce high bearing capacity.

Characteristics of the Bearing Capacity for New Auger-Drilled Piles (새로운 매입말뚝 공법의 지지력 특성)

  • 백규호
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.25-36
    • /
    • 1997
  • To increase the bearing capacity of existing auger-drilled piles and decrease the noise and vibration during the installation of the piles, Spirally-reamed and Under-reamed auger trilled piling methods were developed. Field tests were performed to verify the inurement degree of bearing capacity and the constructional possibility of the new augerdrilled piling methods. The test results showed that the bearing capacity of the new augertrilled piles was fairly improved by the grooves of piles, and the skin friction was affected by the groove height and spacing between grooves. It was found that the skin friction takes the great part of total bearing capacity in auger drilled Biles, i.e. 74~80% in case of the existing methods and 81~86% in case of these methods. Moreover, the settlement of spirally-reamed and under reamed piles was smaller than that of the existing augerdrilled pile for the same loading state.

  • PDF

Design of Spindle Motor-chuck System for Ultra High Resolution (나노급 정밀 구동을 위한 스핀들 모터-척 시스템 설계)

  • Kim, Kyung-Ho;Kim, Ha-Yong;Shin, Bu-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.614-619
    • /
    • 2009
  • The STW(servo track writing) system which is the process of writing servo signals on disks before assembling in drives uses the spindle motor-chuck mechanism to realize low cost because the spindle motor-chuck mechanism has merit which can simultaneously write multi-disk by piling up disks in hub. Therefore, when the spindle motor-chuck mechanism of horizontal type operates in high rotation speed it is necessary to reduce the effect of RRO(repeatable run-out) and NRRO(non-repeatable run-out) to achieve the high precision accuracy of nano-meter level during the STW process. In this paper, we analyzed that the slip in assembly surfaces can be caused by the mechanical tolerance and clamping force in hub-chuck mechanism and can affect NRRO performance. We designed springs for centering and clamping considering centrifugal force by the rotation speed and assembly condition. The experimental result showed NRRO performance improves about 30 % than case of weak clamping force. The result shows that the optimal design of the spindle motor-chuck mechanism can effectively reduce the effect of NRRO and RRO in STW process.

Acoustic insertion loss by a bubble layer for the application to air bubble curtain and air masker (기포층 음향 삽입손실 연구: 기포커튼과 에어마스커)

  • Park, Cheolsoo;Jeong, So Won;Kim, Gun Do;Moon, Ilsung;Yim, Geuntae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.227-236
    • /
    • 2020
  • This paper derives the insertion loss for the bubble layer of an air bubble curtain and an air masker which are used to reduce ocean anthropogenic noise such as the piling noise and the ship noise. The air bubble curtain is considered as a 'fluid-air bubble layer-fluid' model and the environment for the air masker is simplified as an 'vacuum-thin plate-fluid-air bubble layer-fluid' model. The air bubble layer in each model is assumed as the effective medium which has the complex wavenumber and the complex impedance corresponding to the bubble population distribution. The numerical simulations are performed to examine the insertion loss depending on the bubble population, the void fraction, and the thickness of the layer.

Development of New Micropiling Technique and Field Installation (신개념 마이크로파일 개발 및 현장시험시공)

  • Choi, Chang-Ho;Goo, Jeong-Min;Lee, Jung-Hoon;Cho, Sam-Deok;Jeong, Jae-Hyeong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.571-578
    • /
    • 2009
  • Recently, micropiling techniques are increasingly applied in foundation rehabilitation/underpinning and seismic retrofitting projects where working space provides the limited access for conventional piling methods. Micropiling techniques provide environmental-friendly methods for minimizing disturbance to adjacent structures, ground, and the environment. Its installation is possible in restrictive area and general ground conditions. The cardinal features that the installation procedures cause minimal vibration and noise and require very low ceiling height make the micropiling methods to be commonly used for underpin existing structures. In the design point of view, the current practice obligates the bearing capacity of micropile to be obtained from skin friction of only rock-socketing area, in which it implies the frictional resistance of upper soil layer is ignored in the design process. In this paper, a new micropiling method and its verification studies via field installation are presented. The new method provides a specific way to grout bore-hole to increase frictional resistance between surrounding soil and pile-structure and it allows to consider the skin friction of micropiles for upper soil layer during design process.

  • PDF

Strength and Friction Behavior of Cement paste poured in the Bored Pile (매입말뚝의 시멘트풀 강도 및 마찰거동에 관한 연구)

  • Park, Jong-Bae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.3
    • /
    • pp.31-39
    • /
    • 2004
  • The bored pile is widely used as a low noise and vibration piling method in Korea. However, there is design tendency to minimize the friction capacity of the bored pile because of uncertainty and the quality control specification is not set up. This research analysed the strength characteristics of cement paste after the uniaxial compression test with various condition. Test results show that the compressive strength of cement paste with w/c=0.83 was up to $156.0kgf/cm^2$, and the lower w/c ratio and the longer age, the strength of cement paste increased. Also the higher soil mixing ratio, the strength of soil cement decreased, and too high soil mixing ratio caused the malfuction of soil cement. Also this research analysed the 188 dynamic pile test results which were performed before and after hardening of cement paste. Analysis result showed that the average ultimate unit friction capacity was $9.1tf/m^2$ and this result surpassed the common design criteria of the bored pile.

  • PDF

Estimation of Bearing Capacity of SIP Pile Installed by Improved Criteria (개선된 기준으로 시공된 SIP 말뚝의 지지력 평가에 관한 연구)

  • Park, Jong-Bae;Kim, Jung-Soo;Lim, Hae-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.3
    • /
    • pp.5-15
    • /
    • 2004
  • SIP has been widely used as a low noise and vibration piling method in Korea. But the quality control of SIP was not properly settled down and field workers did not fully understand the principle of SIP method. So not a less troubles were raised at construction site and bearing capacity was not fully mobilized. To settle these problems, Korea National Housing Corporation amended the construction and load test criteria of SIP in 2002. After load tests on the SIPs installed in field according to the new criteria, we found that the bearing capacity in field vs the design load ratio increased and bearing characteristics was enhanced than that installed by the former criteria. To consider the enhanced bearing characteristics in the pile design and determine the adequate design criteria, this paper analyzed the accuracy of design criterion which were commonly used in Korea comparing with the load test results. Analysis result shows that Meyerhof criteria(1976) properly simulates the bearing capacity of SIP installed by the new construction and load test criteria.

  • PDF

Analysis Method Considering the Ground Reinforcement Effect of Micropile by Field Loading Tests (재하시험을 통한 소구경말뚝의 지반보강효과를 고려한 해석법)

  • Hong, Seok-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.89-99
    • /
    • 2009
  • Compared to standard piling methods, micropile construction can be used in downtown areas since it generates less vibration and noise. Since it only causes less soil disturbance, it is commonly used as reinforcement to existing structures. In this study, a field wherein the bearing capacity and settlement of soil can not support the weight of the superstructure was selected and micropiles were implemented instead of ordinary piles. The deformation modulus of the micropile reinforced ground was determined and was directly reflected in the design. Loading testing was used to check whether or not the allowable bearing capacity satisfies the condition of the designed bearing capacity. The computed deformation modulus based from the test was used in the numerical analysis of soil to investigate the stability of the foundation and analysis method. And a method for controlling the bearing capacity and settlement was recommended.