• 제목/요약/키워드: Pile-soil dynamic interaction

검색결과 73건 처리시간 0.021초

실험 p-y 곡선을 이용한 동적 군말뚝 효과 분석 (The Evaluation of Dynamic Group Pile Effect by the Analysis of Experimental p-y Curves)

  • 김성렬;김성환;정충기;김명모
    • 한국지반공학회논문집
    • /
    • 제18권1호
    • /
    • pp.127-132
    • /
    • 2002
  • 사질토 지반에 근입된 모형말뚝에 대한 진동대 실험을 수행하여 말뚝지반 동적 상호작용 현상을 분석하고 동적군말뚝 효과를 산정하였다. 실험은 단말뚝과 말뚝간격을 말뚝직경의 3~8배로 변화시킨 $3\times3$ 군말뚝에 대하여 수행하였다. 동적 군맡뚝 효과는 단말뚝과 군말뚝의 동적 p-y곡선의 중심 기울기를 비교하여 산정하였고, 실험에서 얻어진 p-y곡선은 API의 반복 p-y곡선과 비교하였다. 실험결과 말뚝 간격, 입력 지진파의 주파수와 진폭 변화에 따른 동적 군말뚝 효과를 산정할 수 있었다.

기계기초의 지반동력학적 해석 (Soil Dynamics for Vibrating Machine Foundation)

  • 전준수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.3-25
    • /
    • 2003
  • In this presentation, soil dynamics for vibrating machine foundation is briefly stated, and the result of a model pile test is presented. Analystical methods used in solving for the stiffness and damping factor for pile-soil system are also treated and the results of the test and the calculated values are compared.

  • PDF

Nonlinear dynamic analysis of laterally loaded pile

  • Mehndiratta, S.;Sawant, V.A.;Samadhiya, N.K.
    • Structural Engineering and Mechanics
    • /
    • 제49권4호
    • /
    • pp.479-489
    • /
    • 2014
  • In the present study a parametric analysis is conducted to study the effect of pile dimension and soil properties on the nonlinear dynamic response of pile subjected to lateral sinusoidal load at the pile head. The study is conducted on soil-pile model of different pile diameter, pile length and soil modulus, and results are compared to get the effect. The soil-pile system is modelled using Finite element method. The programming is done in MATLAB. Time history analysis of model is done for varying non-dimensional frequency of load and the results are compared to get the non-dimensional frequency at which pile head displacement is maximum in each case. Maximum possible bending moment and soil-pile interacting forces for the dynamic excitation of the pile is also compared. When results are compared with the linear response, it is observed that non-dimensional frequency is reduced in nonlinear response on account of reduction in the soil stiffness due to yielding. Nonlinear response curve shows high amplitude as compared to linear response curve.

동적기본해의 역FFT에 의한 비선형 지반-말뚝-구조계의 시간영역 지진응답 해석 (Time Domain Seismic Response Analysis of Nonlinear Soil-Pile-Structure Interaction System using Inverse FFT of Dynamic Fundamental Solution)

  • 김문겸;임윤묵;조석호;박종헌;정대희
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.125-132
    • /
    • 2002
  • In this study, a numerical method is developed for nonlinear analysis for soil-pile-structure interaction system in time domain. Finite elements considering material nonlinearity are used for the near field and boundary elements for the far field. In the near field, frame elements are used for modeling a pile and plane-strain elements for surrounding soil and superstructure. In. the far field, boundary element formulation using the dynamic fundamental solution is adopted and coupled with the near field. Transformation of stiffness matrices of boundary elements into time domain is performed by inverse FFT. Stiffness matrices in the near field and far field are coupled. Newmark direct time integration method is applied. Developed soil-pile-structure interaction analysis method is verified with available literature and commercial code. Also, parametric studies by developed numerical method are performed. And seismic response analysis is performed using actual earthquake records.

  • PDF

비선형 유효응력해석을 이용한 Takahama 잔교식 안벽의 내진성능 평가 (Evaluation of Seismic Performance of Takahama Wharf Using Nonlinear Effective Stress Analysis)

  • ;이진선;김성렬
    • 한국지반공학회논문집
    • /
    • 제33권4호
    • /
    • pp.47-56
    • /
    • 2017
  • 잔교식 안벽의 내진설계는 보통 다중모드 스펙트럼 해석과 같은 단순 동해석 방법을 적용하여 수행된다. 이러한 단순 해석법은 구조물의 한계상태를 평가하는데 유용할 수 있다. 그러나, 과거에 발생한 잔교식 안벽의 지진피해사례를 살펴보면, 기초지반의 변형 또는 지반-말뚝 사이의 동적 상호작용이 구조물의 전체 거동에 큰 영향을 미치는 것으로 나타났다. 이러한 거동은 지반-말뚝-구조물 동적 상호작용을 정밀하게 모사할 수 있는 비선형 유효응력 해석을 수행하여 평가할 수 있다. 본 연구에서는 잔교식 안벽의 내진성능을 평가할 수 있는 3차원 수치 모델링 기법을 선정하고, 이를 Hyogoken Nambu 지진(1995)시 고베항의 잔교식 안벽 피해사례에 적용하여 그 적용성을 검증하였다. 해석결과, 본 연구에서 적용한 수치 모델링 기법이 안벽의 지진피해 거동을 잘 모사할 수 있으며, 지반의 과잉간극수압증가 및 지반-구조물과의 동적 상호작용이 안벽의 지진거동에 큰 영향을 주는 것으로 나타났다.

지반-말뚝 동적 상호 작용을 고려한 말뚝의 수치 모델링 : 메쉬 크기와 형상에 대한 매개 변수 연구 (Parametric Study with the Different Size of Meshes in Numerical Analysis Considering the Dynamic Soil-Pile Interactions)

  • 나선홍;김성환;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1441-1446
    • /
    • 2009
  • Numerical analysis is a powerful method in evaluating the soil-pile-structure interaction under the dynamic loading, and this approach has been applied to the practical area due to the development of computer technology. Finite Difference Method, one of the most popular numerical methods, is sensitive to the shape and the number of mesh. However, the trial and error approach is conducted to obtain the accurate results and the reasonable simulation time because of the lack of researches about mesh size and the number. In this study, FLAC 3D v3.1 program(FDM) is used to simulate the dynamic pile model tests, and the numerical results are compared with the 1G shaking table tests results. With the different size and shape of mesh, the responses of pile behavior and the simulation time are estimated, and the optimum mesh sizes in dynamic analysis of single pile is studied.

  • PDF

Numerical FEM assessment of soil-pile system in liquefiable soil under earthquake loading including soil-pile interaction

  • Ebadi-Jamkhaneh, Mehdi;Homaioon-Ebrahimi, Amir;Kontoni, Denise-Penelope N.;Shokri-Amiri, Maedeh
    • Geomechanics and Engineering
    • /
    • 제27권5호
    • /
    • pp.465-479
    • /
    • 2021
  • One of the important causes of building and infrastructure failure, such as bridges on pile foundations, is the placement of the piles in liquefiable soil that can become unstable under seismic loads. Therefore, the overarching aim of this study is to investigate the seismic behavior of a soil-pile system in liquefiable soil using three-dimensional numerical FEM analysis, including soil-pile interaction. Effective parameters on concrete pile response, involving the pile diameter, pile length, soil type, and base acceleration, were considered in the framework of finite element non-linear dynamic analysis. The constitutive model of soil was considered as elasto-plastic kinematic-isotropic hardening. First, the finite element model was verified by comparing the variations on the pile response with the measured data from the centrifuge tests, and there was a strong agreement between the numerical and experimental results. Totally 64 non-linear time-history analyses were conducted, and the responses were investigated in terms of the lateral displacement of the pile, the effect of the base acceleration in the pile behavior, the bending moment distribution in the pile body, and the pore pressure. The numerical analysis results demonstrated that the relationship between the pile lateral displacement and the maximum base acceleration is non-linear. Furthermore, increasing the pile diameter results in an increase in the passive pressure of the soil. Also, piles with small and big diameters are subjected to yielding under bending and shear states, respectively. It is concluded that an effective stress-based ground response analysis should be conducted when there is a liquefaction condition in order to determine the maximum bending moment and shear force generated within the pile.

Centrifuge modelling of pile-soil interaction in liquefiable slopes

  • Haigh, Stuart K.;Gopal Madabhushi, S.P.
    • Geomechanics and Engineering
    • /
    • 제3권1호
    • /
    • pp.1-16
    • /
    • 2011
  • Piles passing through sloping liquefiable deposits are prone to lateral loading if these deposits liquefy and flow during earthquakes. These lateral loads caused by the relative soil-pile movement will induce bending in the piles and may result in failure of the piles or excessive pile-head displacement. Whilst the weak nature of the flowing liquefied soil would suggest that only small loads would be exerted on the piles, it is known from case histories that piles do fail owing to the influence of laterally spreading soils. It will be shown, based on dynamic centrifuge test data, that dilatant behaviour of soil close to the pile is the major cause of these considerable transient lateral loads which are transferred to the pile. This paper reports the results of geotechnical centrifuge tests in which models of gently sloping liquefiable sand with pile foundations passing through them were subjected to earthquake excitation. The soil close to the pile was instrumented with pore-pressure transducers and contact stress cells in order to monitor the interaction between soil and pile and to track the soil stress state both upslope and downslope of the pile. The presence of instrumentation measuring pore-pressure and lateral stress close to the pile in the research described in this paper gives the opportunity to better study the soil stress state close to the pile and to compare the loads measured as being applied to the piles by the laterally spreading soils with those suggested by the JRA design code. This test data shows that lateral stresses much greater than one might expect from calculations based on the residual strength of liquefied soil may be applied to piles in flowing liquefied slopes owing to the dilative behaviour of the liquefied soil. It is shown at least for the particular geometry studied that the current JRA design code can be un-conservative by a factor of three for these dilation-affected transient lateral loads.

지반-말뚝 시스템에 대한 3차원 동적 수치 모델링 기법 개발 (Development of 3D Dynamic Numerical Simulation Method on a Soil-Pile System)

  • 김성환;나선홍;한진태;김성렬;선창국;김명모
    • 한국지반공학회논문집
    • /
    • 제27권5호
    • /
    • pp.85-92
    • /
    • 2011
  • 말뚝의 동적 거동은 지반-말뚝의 동적상호작용, 지반의 비선형성, 지반-말뚝 시스템의 공진 현상 등 많은 요소가 상호 작용을 하므로 매우 복잡하다. 그러므로, 말뚝의 동적 거동을 수치해석으로 정확히 모사하려면 많은 노력과 시간이 필요하다. 본 연구에서는 기존의 범용 수치해석 프로그램인 FLAC 3D를 활용하면서도 해석시간을 크게 감소 시킬 수 있는 새로운 모델링 기법을 개발하였다. 본 기법은 전체 해석 영역을 근역 지반과 원역 지반으로 나누고 지반-말뚝 동적상호작용에 영향을 받지 않는 원역 지반을 요소망으로 모델링하는 대신 원역 지반의 지반 운동 시간이력을 근역 지반의 경계 조건에 입력 하중으로 적용하는 기법이다. 이 수치 모델링에서 지진파의 강도가 클 때 일어나는 지반의 비선형 거동을 모사하기 위하여 이력 감쇠 모델을 이용하여 접선 탄성 계수를 전단 변형률의 함수 값으로 입력하였으며, 지반과 말뚝 사이의 분리 현상을 모사하기 위하여 지반-말뚝 경계 요소를 도입하였다. 이 방법은 기존의 방법과 비교하여 해석 결과의 정확성을 유지하면서 해석 시간을 1/3로 감소시켰다. 제안된 수치해석 방법으로 예측한 1g 진동대 모형 실험의 원형 거동은 원형으로 환산한 모형 실험 결과와 유사하게 나타났다.

Experimental study on tuned liquid damper performance in reducing the seismic response of structures including soil-structure interaction effect

  • Lou, Menglin;Zong, Gang;Niu, Weixin;Chen, Genda;Cheng, Franklin Y.
    • Structural Engineering and Mechanics
    • /
    • 제24권3호
    • /
    • pp.275-290
    • /
    • 2006
  • In this paper, the performance of a tuned liquid damper (TLD) in suppressing the seismic response of buildings is investigated with shake table testing of a four-story steel frame model that rests on pile foundation. The model tests were performed in three phases with the steel frame structure alone, the soil and pile foundation system, and the soil-foundation-structure system, respectively. The test results from different phases were compared to study the effect of soil-structure interaction on the efficiency of a TLD in reducing the peak response of the structure. The influence of a TLD on the dynamic response of the pile foundation was investigated as well. Three types of earthquake excitations were considered with different frequency characteristics. Test results indicated that TLD can suppress the peak response of the structure up to 20% regardless of the presence of soils. TLD is also effective in reducing the dynamic responses of pile foundation.