• 제목/요약/키워드: Pile stiffness

검색결과 192건 처리시간 0.026초

Nonlinear dynamic analysis of laterally loaded pile

  • Mehndiratta, S.;Sawant, V.A.;Samadhiya, N.K.
    • Structural Engineering and Mechanics
    • /
    • 제49권4호
    • /
    • pp.479-489
    • /
    • 2014
  • In the present study a parametric analysis is conducted to study the effect of pile dimension and soil properties on the nonlinear dynamic response of pile subjected to lateral sinusoidal load at the pile head. The study is conducted on soil-pile model of different pile diameter, pile length and soil modulus, and results are compared to get the effect. The soil-pile system is modelled using Finite element method. The programming is done in MATLAB. Time history analysis of model is done for varying non-dimensional frequency of load and the results are compared to get the non-dimensional frequency at which pile head displacement is maximum in each case. Maximum possible bending moment and soil-pile interacting forces for the dynamic excitation of the pile is also compared. When results are compared with the linear response, it is observed that non-dimensional frequency is reduced in nonlinear response on account of reduction in the soil stiffness due to yielding. Nonlinear response curve shows high amplitude as compared to linear response curve.

Physical and numerical modeling of drag load development on a model end-bearing pile

  • Shen, R.F.;Leung, C.F.;Chow, Y.K.
    • Geomechanics and Engineering
    • /
    • 제5권3호
    • /
    • pp.195-221
    • /
    • 2013
  • A centrifuge model study is carried out to investigate the behavior of pile subject to negative skin friction induced by pile installation, ground water drawdown and surcharge loading. A single end-bearing pile is examined as the induced negative skin friction would induce the most severe stress on the pile structural material as compared to friction piles. In addition, the behavior of the pile under simultaneous negative skin friction and dead/live loads is examined. To facilitate detailed interpretations of the test results, the model setup is extensively instrumented and involves elaborate test control schemes. To further examine the phenomenon of negative skin friction on an end-bearing pile, finite element analyses were conducted. The numerical analysis is first validated against the centrifuge test data and subsequently extended to examine the effects of pile slenderness ratio, surcharge intensity and pile-soil stiffness ratio on the degree of mobilization of negative skin friction induced on the pile. Finally experimental and numerical studies are conducted to examine the effect of applied transient live load on pile subject to negative skin friction.

MSG공법에 의한 PRD강관말뚝 보강에 관한 사례 연구 (An Experimental Study on the MSG Reinforcement of Steel Pipe Pile Installed by PRD)

  • 천병식;강희진;공진영
    • 한국지반환경공학회 논문집
    • /
    • 제8권6호
    • /
    • pp.5-12
    • /
    • 2007
  • 이암은 건조 조건에서는 일정한 강도와 강성을 가지나, 지하수 침투 등에 의한 습윤, 포화 시 고유의 강도 및 강성이 저하되어 급속히 풍화되는 특성을 가지며, 포항지역에서 자주 발생하는 절취사면의 활동은 주로 이암이 풍화되어 전단강도가 급격히 저하되는 것으로 볼 수 있다. 본 연구는 시추조사시 강성이 충분한 것으로 평가된 이암층에 PRD강관말뚝을 시공한 후 정재하 시험을 실시한 결과 소요지지력이 부족하여, 이를 보강하기 위한 가장 우수한 방법을 찾기 위하여 여러 가지 공법을 검토하였다. 말뚝지지력 증대에 가장 효과적인 방법을 찾기 위해 말뚝주변 및 선단부에 MSG공법, 마이크로파일 보강후 주변그라우팅공법, 선단보강 그라우팅 및 콘크리트 속채움 등의 방법으로 시험시공을 실시하였고, 시험말뚝에 대한 정재하시험 결과 MSG공법으로 보강한 말뚝의 지지력이 가장 우수함을 알 수 있었다.

  • PDF

일체식 교대 교량의 파일-교대 연결부 거동에 관한 실험적 연구 (Experimental Study on Behaviors of Pile-Abutment Joint in Integral Abutment Bridge)

  • 김상효;윤지현;안진희;이상우
    • 대한토목학회논문집
    • /
    • 제29권6A호
    • /
    • pp.651-659
    • /
    • 2009
  • 본 연구는 일체식 교대 교량의 파일-교대 연결부의 거동에 관한 것이다. 본 연구에서는 일체식 교대 교량 연결부의 강체거동을 위하여 교대에 매입된 파일(H형강)에 관통철근을 배치한 형태, 스터드 전단연결재를 설치한 형태의 두 가지의 파일-교대 연결부를 제안하였다. 제안된 파일-교대 연결부의 거동 평가를 위하여 제안된 연결부가 설치된 파일-교대 축소모형 시험체와 일체식 교량 설계지침에서 제시한 연결부가 설치된 파일-교대 축소모형 시험체를 제작하여 하중재하시험을 수행하였다. 하중재하시험 결과, 모든 시험체에서 탄성영역 내의 초기강성은 일반적인 일체식 교대 교량에 적용이 가능할 정도로 나타났다. 그러나 항복 이후 강성과 하중저항 성능, 균열진전양상, 회전 강성 및 지압강도 측면에서 비교한 결과, 본 연구에서 제안한 파일-교대 연결부 방식이 일체식 교대교량의 파일 연결부의 강체거동에 더욱 효과적인 것으로 평가되었다.

Investigation on the responses of offshore monopile in marine soft clay under cyclic lateral load

  • Fen Li;Xinyue Zhu;Zhiyuan Zhu;Jichao Lei;Dan Hu
    • Geomechanics and Engineering
    • /
    • 제37권4호
    • /
    • pp.383-393
    • /
    • 2024
  • Monopile foundations of offshore wind turbines embedded in soft clay are subjected to the long-term cyclic lateral loads induced by winds, currents, and waves, the vibration of monopile leads to the accumulation of pore pressure and cyclic strains in the soil in its vicinity, which poses a threat to the safety operation of monopile. The researchers mainly focused on the hysteretic stress-strain relationship of soft clay and kinds of stiffness degradation models have been adopted, which may consume considerable computing resources and is not applicable for the long-term bearing performance analysis of monopile. In this study, a modified cyclic stiffness degradation model considering the effect of plastic strain and pore pressure change has been proposed and validated by comparing with the triaxial test results. Subsequently, the effects of cyclic load ratio, pile aspect ratio, number of load cycles, and length to embedded depth ratio on the accumulated rotation angle and pore pressure are presented. The results indicate the number of load cycles can significantly affect the accumulated rotation angle of monopile, whereas the accumulated pore pressure distribution along the pile merely changes with pile diameter, embedded length, and the number of load cycles, the stiffness of monopile can be significantly weakened by decreasing the embedded depth ratio L/H of monopile. The stiffness degradation of soil is more significant in the passive earth pressure zone, in which soil liquefaction is likely to occur. Furthermore, the suitability of the "accumulated rotation angle" and "accumulated pore pressure" design criteria for determining the required cyclic load ratio are discussed.

유체-구조물-지반 상호작용을 고려한 비결합 말뚝기초에 지지된 LNG 저장탱크의 수평지진입력에 대한 지진응답 매개변수해석 (A Parametric Study on the Seismic Response Analysis of LNG Storage Tank with Disconnected Pile Foundation Subjected to Horizontal Seismic Input Considering Fluid-Structure-Soil Interaction)

  • 손일민;김재민
    • 한국지진공학회논문집
    • /
    • 제28권1호
    • /
    • pp.21-32
    • /
    • 2024
  • This study performed the seismic response analysis of an LNG storage tank supported by a disconnected piled raft foundation (DPRF) with a load transfer platform (LTP). For this purpose, a precise analytical model with simultaneous consideration of Fluid-Structure Interaction (FSI) and Soil-Structure Interaction (SSI) was used. The effect of the LTP characteristics (thickness, stiffness) of the DPRF system on the seismic response of the superstructure (inner and outer tanks) and piles was analyzed. The analytical results were compared with the response of the piled raft foundation (PRF) system. The following conclusions can be drawn from the numerical results: (1) The DPRF system has a smaller bending moment and axial force at the head of the pile than the PRF system, even if the thickness and stiffness of the LTP change; (2) The DPRF system has a slight stiffness of the LTP and the superstructure member force can increase with increasing thickness. This is because as the stiffness of the LTP decreases and the thickness increases, the natural frequency of the LTP becomes closer to the natural frequency of the superstructure, which may affect the response of the superstructure. Therefore, when applying the DPRF system, it is recommended that the sensitivity analysis of the seismic response to the thickness and stiffness of the LTP must be performed.

Integral Abutment Bridge behavior under uncertain thermal and time-dependent load

  • Kim, WooSeok;Laman, Jeffrey A.
    • Structural Engineering and Mechanics
    • /
    • 제46권1호
    • /
    • pp.53-73
    • /
    • 2013
  • Prediction of prestressed concrete girder integral abutment bridge (IAB) load effect requires understanding of the inherent uncertainties as it relates to thermal loading, time-dependent effects, bridge material properties and soil properties. In addition, complex inelastic and hysteretic behavior must be considered over an extended, 75-year bridge life. The present study establishes IAB displacement and internal force statistics based on available material property and soil property statistical models and Monte Carlo simulations. Numerical models within the simulation were developed to evaluate the 75-year bridge displacements and internal forces based on 2D numerical models that were calibrated against four field monitored IABs. The considered input uncertainties include both resistance and load variables. Material variables are: (1) concrete elastic modulus; (2) backfill stiffness; and (3) lateral pile soil stiffness. Thermal, time dependent, and soil loading variables are: (1) superstructure temperature fluctuation; (2) superstructure concrete thermal expansion coefficient; (3) superstructure temperature gradient; (4) concrete creep and shrinkage; (5) bridge construction timeline; and (6) backfill pressure on backwall and abutment. IAB displacement and internal force statistics were established for: (1) bridge axial force; (2) bridge bending moment; (3) pile lateral force; (4) pile moment; (5) pile head/abutment displacement; (6) compressive stress at the top fiber at the mid-span of the exterior span; and (7) tensile stress at the bottom fiber at the mid-span of the exterior span. These established IAB displacement and internal force statistics provide a basis for future reliability-based design criteria development.

A hybrid MC-HS model for 3D analysis of tunnelling under piled structures

  • Zidan, Ahmed F.;Ramadan, Osman M.
    • Geomechanics and Engineering
    • /
    • 제14권5호
    • /
    • pp.479-489
    • /
    • 2018
  • In this paper, a comparative study of the effects of soil modelling on the interaction between tunnelling in soft soil and adjacent piled structure is presented. Several three-dimensional finite element analyses are performed to study the deformation of pile caps and piles as well as tunnel internal forces during the construction of an underground tunnel. The soil is modelled by two material models: the simple, yet approximate Mohr Coulomb (MC) yield criterion; and the complex, but reasonable hardening soil (HS) model with hyperbolic relation between stress and strain. For the former model, two different values of the soil stiffness modulus ($E_{50}$ or $E_{ur}$) as well as two profiles of stiffness variation with depth (constant and linearly increasing) were used in attempts to improve its prediction. As these four attempts did not succeed, a hybrid representation in which the hardening soil is used for soil located at the highly-strained zones while the Mohr Coulomb model is utilized elsewhere was investigated. This hybrid representation, which is a compromise between rigorous and simple solutions yielded results that compare well with those of the hardening soil model. The compared results include pile cap movements, pile deformation, and tunnel internal forces. Problem symmetry is utilized and, therefore, one symmetric half of the soil medium, the tunnel boring machine, the face pressure, the final tunnel lining, the pile caps, and the piles are modelled in several construction phases.

Buckling analysis of semi-rigid connected and partially embedded pile in elastic soil using differential transform method

  • Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.971-995
    • /
    • 2014
  • The parts of semi-rigid connected and partially embedded piles in elastic soil, above the soil and embedded in the soil are called the first region and second region, respectively. The upper end of the pile in the first region is supported by linear-elastic rotational spring. The forth order differential equations of both region for critical buckling load of partially embedded and semi-rigid connected pile with shear deformation are established using small-displacement theory and Winkler hypothesis. These differential equations are solved by differential transform method (DTM) and analytical method and critical buckling loads of semirigid connected and partially embedded pile are obtained, results are given in tables and graphs are presented for investigating the effects of relative stiffness of the pile and flexibility of rotational spring.

Dynamic response of pipe pile embedded in layered visco-elastic media with radial inhomogeneity under vertical excitation

  • Cui, Chun Y.;Meng, Kun;Wu, Ya J.;Chapman, David;Liang, Zhi M.
    • Geomechanics and Engineering
    • /
    • 제16권6호
    • /
    • pp.609-618
    • /
    • 2018
  • A new mechanical model for predicting the vibration of a pipe pile embedded in longitudinally layered visco-elastic media with radial inhomogeneity is proposed by extending Novak's plain-strain model and complex stiffness method to consider viscous-type damping. The analytical solutions for the dynamic impedance, the velocity admittance and the reflected signal of wave velocity at the pile head are also derived and subsequently verified by comparison with existing solutions. An extensive parametric analysis is further performed to examine the effects of shear modulus, viscous damping coefficient, coefficient of disturbance degree, weakening or strengthening range of surrounding soil and longitudinal soft or hard interbedded layer on the velocity admittance and the reflected signal of wave velocity at the pile head. It is demonstrated that the proposed model and the obtained solutions provide extensive possibilities for practical application compared with previous related studies.