• 제목/요약/키워드: Pile stiffness

검색결과 192건 처리시간 0.02초

샌드파일 설치지반에서의 복합지반효과 (A Study on Composite Ground Effects of Sand Piles)

  • 천병식;여유현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.397-404
    • /
    • 2001
  • Sand pile is one of the widely used ground improvement methods. Sand pile improved ground will have composite ground effects, even though the primary purpose is the accelerated consolidation. However, the consolidation of sand pile improved ground as a composite ground is substantially under developed. This study investigate the effect of composite ground for relatively low volume displacement sand piles. Plate bearing tests and earth pressure cell measurements are performed. It turned out that the contribution of sand pile as a load bearing mechanism is not substantial. However the bearing capacity of the surrounding clayey soil is increased by sixty percent, and it cause the stiffness change during consolidation. Therefore it is expected that, the effect of increased stiffness of sand pile improved ground is influenced by change of ground stiffness.

  • PDF

수직증축시 기존말뚝과 보강말뚝의 하중분담율 및 축강성 분석 (A Study on the Load Distribution Ratio and Axial Stiffness on Existing and Reinforcing-Pile in Vertical Extension Remodeling)

  • 정상섬;조현철
    • 한국지반공학회논문집
    • /
    • 제35권1호
    • /
    • pp.17-30
    • /
    • 2019
  • 본 연구는 3차원 수치해석을 통해 기존말뚝과 보강말뚝의 하중분담율(Load Distribution Ratio)과 근사적 해석 기법으로 보강말뚝의 축방향 강성(Axial Stiffness)을 산정하였다. 시공단계를 고려하여 말뚝기초의 LDR에 영향을 미치는 인자를 파악하기 위해서 1) 말뚝기초의 강성, 2) 말뚝기초의 선단지지조건, 3) 기초판 접촉효과, 4) 보강말뚝의 설치위치에 따라 해석을 수행하여 기존말뚝과 신설말뚝의 하중분담율 거동을 확인하였다. 또한 5) 기존말뚝의 축방향 강성($K_{ve}$)를 사용하여 말뚝지지 전면기초의 3차원 근사적 해석기법(YSPR)으로 보강말뚝의 직경에 따른 강성($K_{vr}$)을 산정하고, 장기간 사용으로 인한 경화를 고려하여 $K_{ve}$를 3단계로 나누어 감소시켜 보강말뚝의 강성 변화의 경향을 살펴보고, 신설 말뚝의 강성 산정방법을 제시하였다.

Reinforcement effect of micropile and bearing characteristics of micropiled raft according to the cohesion of soil and stiffness of pile

  • KangIL Lee;MuYeun Kim;TaeHyun Hwang
    • Geomechanics and Engineering
    • /
    • 제37권5호
    • /
    • pp.511-525
    • /
    • 2024
  • Micropiled raft has been used to support the existing and new structures or to provide the seismic reinforcement of foundation systems. Recently, research on micropile or micropiled raft has been actively conducted as the usage of micropile has increased, and the reinforcement effect of pile for the raft, the pile installation methods, and methods for calculating the bearing capacity of micropiled raft have been proposed. In addition, existing research results show that the behavior of this foundation system is different depending on the pile conditions and can be greatly influenced by the characteristics of the upper or lower ground depending on the conditions of pile. In other words, considering that the micropile is a friction pile, it can be predicted that the reinforcing effect of micropile for the raft and the bearing capacity of micropiled raft may depend on the cohesion of upper soil layer depending on the pile conditions. However, existing studies have limitations in that they were conducted without taking this into account. However, existing studies have limitations as they have been conducted without considering these characteristics. Accordingly, this study investigated the reinforcing effect of micropile and the bearing characteristics of micropiled raft by varying the cohesion of upper soil layer and the stiffness of pile which affect the behavior of micropiled raft. In this results, the reinforcing effect of micropile on the raft also increased as the cohesion of soil layer increased, but the reinforcing effect of pile was more effective in ground conditions with decreased the cohesion. In addition, the relationship between the axial stiffness of micropile and the bearing capacity of micropiled raft was found to be a logarithmic linear relationship. It was found that the reinforcing effect of micropile can increase the bearing capacity of raft by 1.33~ 3.72 times depending on the cohesion of soil layer and the rigidity of pile.

현장시험에 의한 충격반향기법의 말뚝 건전도 검사 적용성 평가 (Verifications of the Impact-echo Technique for Integrity Evaluations of the Drilled Shaft using Full Scale Tests)

  • 정경자;조성민;김홍종;정종홍
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.33-40
    • /
    • 2005
  • Impact-echo test, a kind of simple and economical method to evaluate the integrity of drilled piles has some limitations to use because the stress wave can be generated only on the head of a pile and the wave propagation in the pile with surrounding soils are very complicated. Numerical analyses and model tests in the laboratory have shown that both the ratio of length to diameter of a pile and the stiffness ratio of pile to soil have influence on the resolution of testing results. Full scale testing piles which have artificial defects were used to verify the capability of impact-echo technique as a tool for the pile integrity evaluation. Behaviour of the reflected signal of stress wave was investigated according to the type of defects. Elastic modulus of the pile was calculated using the wave velocity in the pile and the unconfined strength of concrete specimen. Influences of the stiffness difference between the pile and the ground on the characteristics of a wave signal were also examined.

  • PDF

Cyclic behavior of connection between footing and concrete-infilled composite PHC pile

  • Bang, Jin-Wook;Hyun, Jung Hwan;Lee, Bang Yeon;Kim, Yun Yong
    • Structural Engineering and Mechanics
    • /
    • 제50권6호
    • /
    • pp.741-754
    • /
    • 2014
  • The conventional PHC pile-footing connection is the weak part because the surface area and stiffness are sharply changed. The Composite PHC pile reinforced with the transverse shear reinforcing bars and infilled-concrete, hereafter ICP pile, has been developed for improving the flexural and shear performance. This paper investigates the cyclic behavior and performance of the ICP pile-footing connection. To investigate the behavior of the connection, one PHC and two ICP specimens were manufactured and then a series of cyclic loading tests were performed. From the test results, it was found that the ICP pile-footing connection exhibited higher cyclic behavior and connection performance compared to the conventional PHC pile-footing connection in terms of ductility ratio, stiffness degradation and energy dissipation capacity.

교각세굴을 고려한 말뚝기초의 해석 (Analysis of Piled Piers Considering Riverbed Scouring)

  • Jeong, Sang-Seom;Suh, Jung-Ju;Won, Jin-Oh
    • 한국지반공학회논문집
    • /
    • 제18권3호
    • /
    • pp.43-50
    • /
    • 2002
  • 본 연구에서는 지반말뚝, 말뚝-말뚝캡, 그리고 말뚝-유체간의 상호작용 해석을 수행하여 교각세굴을 고려한 말뚝기초의 거동을 해석하였다. 지반-말뚝의 상호작용은 비선형 하중전이곡선(p-y, t-z, 그리고 q-z 곡선)을, 말뚝-말뚝캡의 상호작용에서는 군말뚝의 배열과 말뚝-말뚝캡 사이의 구속조건을 고려하였다. 말뚝유체의 상호작용은 세굴에 의한 지반의 강성 저하를 고려하여 지반-말뚝의 상호작용에 포함하여 해석하였다. 그 결과 세굴심이 깊어질수록 말뚝에 발생하는 최대 휨모멘트의 값이 증가함을 알 수 있었으며, 이를 바탕으로 세굴에 따른 군말뚝의 안정성 평가에서는 지반-말뚝 및 말뚝-말뚝캡의 상호작용을 고려한 해석을 수행하는 것이 바람직함을 알 수 있었다.

The effect of pile cap stiffness on the seismic response of soil-pile-structure systems under near-fault ground motions

  • Abbasi, Saeed;Ardakani, Alireza;Yakhchalian, Mansoor
    • Earthquakes and Structures
    • /
    • 제20권1호
    • /
    • pp.87-96
    • /
    • 2021
  • Ground motions recorded in near-fault sites, where the rupture propagates toward the site, are significantly different from those observed in far-fault regions. In this research, finite element modeling is used to investigate the effect of pile cap stiffness on the seismic response of soil-pile-structure systems under near-fault ground motions. The Von Wolffersdorff hypoplastic model with the intergranular strain concept is applied for modeling of granular soil (sand) and the behavior of structure is considered to be non-linear. Eight fault-normal near-field ground motion records, recorded on rock, are applied to the model. The numerical method developed is verified by comparing the results with an experimental test (shaking table test) for a soil-pile-structure system. The results, obtained from finite element modeling under near-fault ground motions, show that when the value of cap stiffness increases, the drift ratio of the structure decreases, whereas the pile relative displacement increases. Also, the residual deformations in the piles are due to the non-linear behavior of soil around the piles.

지진하중을 받는 말뚝 시스템의 고유 진동수 예측 (Prediction of the Natural Frequency of a Soil-Pile-Structure System during an earthquake)

  • 양의규;권선용;최정인;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.976-984
    • /
    • 2009
  • This study proposes a simple method that uses a simple mass-spring model to predict the natural frequency of a soil-pile-structure system in sandy soil. This model includes a pair of matrixes, i.e., a mass matrix and a stiffness matrix. The mass matrix is comprised of the masses of the pile and superstructure, and the stiffness matrix is comprised of the stiffness of the pile and the spring coefficients between the pile and soil. The key issue in the evaluation of the natural frequency of a soil-pile system is the determination of the spring coefficient between the pile and soil. To determine the reasonable spring coefficient, subgrade reaction modulus, nonlinear p-y curves and elastic modulus of the soil were utilized. The location of the spring was also varied with consideration of the infinite depth of the pile. The natural frequencies calculated by using the mass-spring model were compared with those obtained from 1-g shaking table model pile tests. The comparison showed that the calculated natural frequencies match well with the results of the 1-g shaking table tests within the range of computational error when the three springs, whose coefficients were calculated using Reese's(1974) subgrade reaction modulus and Yang's (2009) dynamic p-y backbone curves, were located above the infinite depth of the pile.

  • PDF

Bending characteristics of Prestressed High Strength Concrete (PHC) spun pile measured using distributed optical fibre strain sensor

  • Mohamad, Hisham;Tee, Bun Pin;Chong, Mun Fai;Lee, Siew Cheng;Chaiyasarn, Krisada
    • Smart Structures and Systems
    • /
    • 제29권2호
    • /
    • pp.267-278
    • /
    • 2022
  • Pre-stressed concrete circular spun piles are widely used in various infrastructure projects around the world and offer an economical deep foundation system with consistent and superior quality compared to cast in-situ and other concrete piles. Conventional methods for measuring the lateral response of piles have been limited to conventional instrumentation, such as electrical based gauges and pressure transducers. The problem with existing technology is that the sensors are not able to assist in recording the lateral stiffness changes of the pile which varies along the length depending on the distribution of the flexural moments and appearance of tensile cracks. This paper describes a full-scale bending test of a 1-m diameter spun pile of 30 m long and instrumented using advanced fibre optic distributed sensor, known as Brillouin Optical Time Domain Analysis (BOTDA). Optical fibre sensors were embedded inside the concrete during the manufacturing stage and attached on the concrete surface in order to measure the pile's full-length flexural behaviour under the prescribed serviceability and ultimate limit state. The relationship between moments-deflections and bending moments-curvatures are examined with respect to the lateral forces. Tensile cracks were measured and compared with the peak strains observed from BOTDA data which corroborated very well. By analysing the moment-curvature response of the pile, the structure can be represented by two bending stiffness parameters, namely the pre-yield (EI) and post-yield (EIcr), where the cracks reduce the stiffness property by 89%. The pile deflection profile can be attained from optical fibre data through closed-form solutions, which generally matched with the displacements recorded by Linear Voltage Displacement Transducers (LVDTs).

지반-구조물간 경계면 효과를 고려한 BARRETTE 말뚝의 거동 (Soil-Structure Interface Effects on Barrette Pile Behaviors)

  • 이상래;박성완;임대성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.102-107
    • /
    • 2009
  • Recently, the use of barrette pile is remarkably increased specially for high-rise building and bridge foundations. However, on the contrary, very few studies have been made for analyzing barrette pile behavior considering interface behavior between pile and soils around. Therefore, in this paper, these effects are evaluated by using the 3-dimensional non-linear finite element method with the results of full-scale pile load test from the fields. In addition to that, the selection of proper stiffness modulus on the pile interface is discussed.

  • PDF