• 제목/요약/키워드: Pile numerical analysis

검색결과 467건 처리시간 0.025초

현장정재하시험을 이용한 말뚝 거동특성 수치해석 예측기법의 신뢰성 검증 (Reliability Verification of Numerical Prediction Method on Pile Behaviour Characteristics using Field Static Loading Test)

  • 남호성;백승철
    • 한국지반환경공학회 논문집
    • /
    • 제18권9호
    • /
    • pp.11-18
    • /
    • 2017
  • 수치해석기법을 이용한 말뚝의 거동특성 예측방법은 정재하시험비가 고가이기 때문에 공사 전 말뚝의 거동을 예측할 수 있다는 장점으로 설계단계에서 널리 이용되고 있지만 그 신뢰성에 대한 연구는 부족한 실정이다. 본 연구에서는 실제 현장에서 말뚝의 거동과 수치해석으로 예측한 말뚝의 거동을 비교함으로써 수치해석 기법의 신뢰성을 검증하였다. 지반과 말뚝의 상호작용에 의한 말뚝의 거동을 정확하게 파악하기 위하여 정재하시험이 수행되는 지반에서 시추조사, 현장원위치시험 등을 통해 지반특성을 확인하였고, 실규모 정재하시험을 수행하여 말뚝의 거동특성을 분석하였다. 정재하시험이 수행된 방식과 동일하게 수치해석을 모사하여 재하시험과 동일한 하중단계에서 말뚝의 거동을 수치해석으로 모사하여 현장시험 결과와 비교함으로써 수치해석 기법의 신뢰성을 검증하였다.

Analysis of pile group behaviour to adjacent tunnelling considering ground reinforcement conditions with assessment of stability of superstructures

  • Young-Jin Jeon;Cheol-Ju Lee
    • Geomechanics and Engineering
    • /
    • 제33권5호
    • /
    • pp.463-475
    • /
    • 2023
  • Tunnel construction activity, conducted mainly in mountains and within urban centres, causes soil settlement, thus requiring the relevant management of slopes and structures as well as evaluations of risk and stability. Accordingly, in this study we performed a three-dimensional finite element analysis to examine the behaviour of piles and pile cap stability when a tunnel passes near the bottom of the foundation of a pile group connected by a pile cap. We examined the results via numerical analysis considering different conditions for reinforcement of the ground between the tunnel and the pile foundation. The numerical analysis assessed the angular distortion of the pile cap, pile settlement, axial force, shear stress, relative displacement, and volume loss due to tunnel excavation, and pile cap stability was evaluated based on Son and Cording's evaluation criterion for damage to adjacent structures. The pile located closest to the tunnel under the condition of no ground reinforcement exhibited pile head settlement approximately 70% greater than that of the pile located farthest from the tunnel under the condition of greatest ground reinforcement. Additionally, pile head settlement was greatest when the largest volume loss occurred, being approximately 18% greater than pile head settlement under the condition having the smallest volume loss. This paper closely examines the main factors influencing the behaviour of a pile group connected by a pile cap for three ground reinforcement conditions and presents an evaluation of pile cap stability.

Numerical FEM assessment of soil-pile system in liquefiable soil under earthquake loading including soil-pile interaction

  • Ebadi-Jamkhaneh, Mehdi;Homaioon-Ebrahimi, Amir;Kontoni, Denise-Penelope N.;Shokri-Amiri, Maedeh
    • Geomechanics and Engineering
    • /
    • 제27권5호
    • /
    • pp.465-479
    • /
    • 2021
  • One of the important causes of building and infrastructure failure, such as bridges on pile foundations, is the placement of the piles in liquefiable soil that can become unstable under seismic loads. Therefore, the overarching aim of this study is to investigate the seismic behavior of a soil-pile system in liquefiable soil using three-dimensional numerical FEM analysis, including soil-pile interaction. Effective parameters on concrete pile response, involving the pile diameter, pile length, soil type, and base acceleration, were considered in the framework of finite element non-linear dynamic analysis. The constitutive model of soil was considered as elasto-plastic kinematic-isotropic hardening. First, the finite element model was verified by comparing the variations on the pile response with the measured data from the centrifuge tests, and there was a strong agreement between the numerical and experimental results. Totally 64 non-linear time-history analyses were conducted, and the responses were investigated in terms of the lateral displacement of the pile, the effect of the base acceleration in the pile behavior, the bending moment distribution in the pile body, and the pore pressure. The numerical analysis results demonstrated that the relationship between the pile lateral displacement and the maximum base acceleration is non-linear. Furthermore, increasing the pile diameter results in an increase in the passive pressure of the soil. Also, piles with small and big diameters are subjected to yielding under bending and shear states, respectively. It is concluded that an effective stress-based ground response analysis should be conducted when there is a liquefaction condition in order to determine the maximum bending moment and shear force generated within the pile.

연약지반상에 측방유동을 받는 교대말뚝기초의 거동분석 (The Analysis of Pile Bridge Abutments on Soft Clay for Loading from Lateral Soil Movement)

  • 이송;강대원
    • 한국철도학회논문집
    • /
    • 제7권2호
    • /
    • pp.149-154
    • /
    • 2004
  • Pile Bridge Abutments constructed on a soft base are affected by a lateral flow. Laterl flow pressure acting on Pile is very difficult to calculate because of, interation of ground and Pile. So, it is different to estimate displacement of Pile Bridge Abutments. This paper studied about possibility of the displacement estimation of Pile Bridge Abutments by using the equivalent sheet pile wall theory that was Randolph proposed in 1981. Analysis program through using the SAGE CRISP that is FEM program. Analysis data used Centrifuge test results of Springman(1991), Bransby(1997) and Ellis(1997)'s paper. In conclusion, maxium displacement that is carried out by centrifuge test and numerical analysis has occured at the head of pile, as well as Maximum displacement of pile is closely similar. But the moment acting on pile of numerical analysis is under estimated compare to the centrifuge test. Through the comparative study, it is found that displacement estimation by equivalent sheet pile wall is in relatively good agreement with the results of centrifuge test.

Numerical analysis of sheet pile wall structure considering soil-structure interaction

  • Jiang, Shouyan;Du, Chengbin;Sun, Liguo
    • Geomechanics and Engineering
    • /
    • 제16권3호
    • /
    • pp.309-320
    • /
    • 2018
  • In this paper, a numerical study using finite element method with considering soil-structure interaction was conducted to investigate the stress and deformation behavior of a sheet pile wall structure. In numerical model, one of the nonlinear elastic material constitutive models, Duncan-Chang E-v model, is used for describing soil behavior. The hard contact constitutive model is used for simulating the behavior of interface between the sheet pile wall and soil. The construction process of excavation and backfill is simulated by the way of step loading. We also compare the present numerical method with the in-situ test results for verifying the numerical methods. The numerical analysis showed that the soil excavation in the lock chamber has a huge effect on the wall deflection and stress, pile deflection, and anchor force. With the increase of distance between anchored bars, the maximum wall deflection and anchor force increase, while the maximum wall stress decreases. At a low elevation of anchored bar, the maximum wall bending moment decreases, but the maximum wall deflection, pile deflection, and anchor force both increase. The construction procedure with first excavation and then backfill is quite favorable for decreasing pile deflection, wall deflection and stress, and anchor forces.

수치해석을 이용한 강관합성 군말뚝의 보강효과 분석 (Analysis of Reinforcement Effect of Steel-Concrete Composite Group Piles by Numerical Analysis)

  • 김성렬;이시훈;정문경;이주형;곽기석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.1132-1139
    • /
    • 2010
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, the load-movement relations and the reinforcement effect by the outer steel pipe in the steel-concrete composite pile were analyzed by performing three-dimensional numerical analyses, which can simulate the yielding behavior of pile material and the elasto-plastic behavior of soils. The parameters analyzed in the study include three pile materials of steel, concrete and composite, pile diameter, pile distance and loading direction. As the results, the axial capacity of the composite pile was about 73% larger than that of the steel pipe pile and about 14% larger than that of the concrete pile. In addition, the horizontal movement at the pile head of the composite pile was about 51% of that of the steel pile and about 19% of that of the concrete pile.

  • PDF

볼트식 각관형식으로 이음된 PHC 말뚝의 거동 (Behavior of PHC Pile Connected by Bolted Rectangular Steel Tubular)

  • 윤원섭
    • 한국산업융합학회 논문집
    • /
    • 제22권6호
    • /
    • pp.615-626
    • /
    • 2019
  • In this study, the applicability of PHC pile jointing method using rectangular steel tubular was studied. PHC pile joints are welded and bolt assembly. The bolt assembly method is a method that improves the various problems of welded joints. Numerical analysis and tests were conducted to analyze the applicability of the PHC pile jointing method using a rectangular steel tubular. The tests were carried out to test the material properties of the rectangular steel tubular material and the bending test of the pile joints. The numerical analysis was interpreted in the same conditons as the tests conditions. As a result, the material strength of each rectangular steel tubular could be used as a joint material. In the bending test, it was evaluated as a sTable material above the allowable stress of piles. In the numerical analysis results under the same conditions as the tests, it was possible to apply the pile joint material without exceeding the allowable stress of the material.

Soil slip을 고려한 터널굴착에 의한 단독말뚝의 거동연구 (A Study on the Behaviour of a Single Pile to Tunnelling Including Soil Slip)

  • 이철주
    • 한국지반환경공학회 논문집
    • /
    • 제10권5호
    • /
    • pp.59-67
    • /
    • 2009
  • 본 연구에서는 단독말뚝의 주변에서 실시되는 터널의 굴착이 지반 및 말뚝에 미치는 영향을 3차원 수치해석을 통하여 분석하였다. 수치해석에서는 말뚝과 주변지반 사이에 경계면요소를 이용하여 소성항복 발생조건을 모델링하였다. 수치해석을 통하여 풍화토 및 풍화암에 시공된 터널과 말뚝의 상호거동에 대한 분석을 실시하였다. 수치해석을 통해 말뚝의 침하, 말뚝과 지반 경계면에서의 상대변위, 전단응력 및 말뚝의 축력변화를 분석하였다. 특히 터널의 굴착과 관련된 전단응력의 전이과정에 대한 심도있는 분석을 실시하였다. 터널굴착에 의한 말뚝-지반 경계면에서 상대변위의 변화로 인하여 말뚝에 작용하는 전단응력 및 축력의 분포가 변하게 된다. 말뚝 본체 대부분에서는 상향의 전단응력이 발생하는 반면(Z/L=0.0-0.8), 말뚝선단부근에서는(Z/L=0.8-1.0) 하향의 전단응력이 발생하여 말뚝에 인장력이 발생된다. 수치해석을 통해서 터널굴착이 말뚝 거동에 미치는 영향을 상세하게 분석하였다.

  • PDF

말뚝-캡 강성을 고려한 군말뚝기초의 해석 (Analysis of Pile Groups Considering Pile-Cap Interaction)

  • 정상섬;원진오;허정원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.363-370
    • /
    • 2001
  • A computationally efficient algorithm to analyze a group pile behavior is proposed by consideration of both soil-pile and pile-cap interactions. Using toad transfer method the nonlinear characteristics of the soil-pile interaction for a single pile is modeled by piecewise linear soil springs (p-y, t-z, and q-z curves). Beam-column method, one of the most practical approaches, is used for numerical modeling of the soil-pile system. In addition to the group effect resulting from the soil-pile-soil interaction, for a more realistic analysis it is essential to consider the effect of pile-cap interaction including geometric configuration of the piles in a group and conectivity conditions between piles and the cap. This paper mainly focuses on the pile-cap interaction and the development of a rational numerical procedure of its incorporation with the beam-column method.

  • PDF

지반-말뚝 동적 상호 작용을 고려한 말뚝의 수치 모델링 : 메쉬 크기와 형상에 대한 매개 변수 연구 (Parametric Study with the Different Size of Meshes in Numerical Analysis Considering the Dynamic Soil-Pile Interactions)

  • 나선홍;김성환;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1441-1446
    • /
    • 2009
  • Numerical analysis is a powerful method in evaluating the soil-pile-structure interaction under the dynamic loading, and this approach has been applied to the practical area due to the development of computer technology. Finite Difference Method, one of the most popular numerical methods, is sensitive to the shape and the number of mesh. However, the trial and error approach is conducted to obtain the accurate results and the reasonable simulation time because of the lack of researches about mesh size and the number. In this study, FLAC 3D v3.1 program(FDM) is used to simulate the dynamic pile model tests, and the numerical results are compared with the 1G shaking table tests results. With the different size and shape of mesh, the responses of pile behavior and the simulation time are estimated, and the optimum mesh sizes in dynamic analysis of single pile is studied.

  • PDF