• 제목/요약/키워드: Pile capacity

검색결과 748건 처리시간 0.024초

실트지반에 타입된 말뚝의 지지력 증가효과 (The Effect of Bearing Capacity Increasement for Driven Pile in Silt)

  • 여병철;오세욱;배우석;안병철
    • 한국지반환경공학회 논문집
    • /
    • 제4권3호
    • /
    • pp.19-26
    • /
    • 2003
  • 최근 연약지반상의 말뚝기초설계에 있어서 경시효과는 말뚝의 지지력 특성을 나타내는 중요한 요소 중의 하나로 인식되고 있다. 본 논문에서는 이러한 지지력 증가효과를 연구하기 위해 두 곳의 현장에서 13개의 말뚝에 대해, 항타시 EOID(초기 동재하시험)을 실시한 후 일정한 시간이 경과한 다음 재항타시험을 수행하였다. 느슨한 실트지반에 H말뚝, 강관말뚝, PHC말뚝을 항타에 의해 설치하고 9일 후 재항타 한 결과 H말뚝, 강관말뚝의 경우 지지력이 증가된 반면, PHC말뚝은 지지력의 증가가 거의 없는 것으로 나타났다. 7일 후 재항타시험을 수행한 결과 단단한 실트지반의 경우 H말뚝과 강관말뚝은 지지력이 1.17배 증가하였다. 그러나 PHC말뚝의 경우 6일 후 수행한 제 1차 재항타시험에서는 지지력이 감소하였다가, 13일 후 수행한 3차 재항타시험에서는 지지력이 1.38배 정도 증가하는 것으로 나타났다.

  • PDF

양방향말뚝재하시험의 재하용량 기준 설정을 위한 사례분석 연구 (A study on case analysis for loading capacity standard establishment of bi-directional pile load test (BD PLT))

  • 최용규;서정혜;김상일
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.377-384
    • /
    • 2008
  • In the bi-directional pile load test (BD PLT) for pile load test of Mega foundation, loading capacity specification were not specified exactly. Therefore there are so many confusions and variations of maximum 2 times in loading capacity are come out. In this study, specifications of bi-directional pile load test (BD PLT) were considered. Based on cases of the bi-directional pile load test performed in domestic areas, maximum equivalent test load, test load increasing ratio and sufficiency ratio of design load were analyzed. It can be known that the loading capacity specification of bi-directional pile load test must be defined as 1-directional test load that is established as more than 2 times of design load.

  • PDF

타격관입 개단말뚝의 동적진동에 의한 압축지지력 저감특성 (Characteristics on the Vertical Load Capacity Degradation for Impact driven Open-ended Piles During Simulated Earthquake /sinusoidal Shaking,)

  • 최용규
    • 한국지반공학회지:지반
    • /
    • 제12권6호
    • /
    • pp.51-64
    • /
    • 1996
  • 축하중계측장치가 부착된 모형 개단 강관 말뚝을 상대밀도 49%인 초세립질 포화 모래지반을 담고 있는 압력 토조속에 타입한 후 정적압축재하시험을 실시하여 극한지지력을 결정하였다. 극한지지력의 임의 수준의 압축하중을 말뚝머리에 재재하한 후 유사지진 진동 및 Sine정현파 진동을 작용시켜 동적 진동에 의한 개단말뚝의 압축지지력 저감특성을 연구하였다. 유사화된 지진진 동과 Sine정현파진동에 의한 개단말뚝의 지지력 저감특성은 큰 차이를 보였다. 유사화된 지진 진동중 지지력 저감율은 작용하중의 크기에 따라 크게 달라지는데, 작용하중의 크기가 약 70% 이하일 경우에는 지지력 감소율이 8%이하였으며, 극한하중의 90%이상을 지지하는 개단말뚝의 극한지 지력은 약 15%이상 감소되었다. 또한, 외주면 마찰력 성분의 감소량은 감소된 총 지지력의 약 80%를 차지하였다. Sine정현파 진동중 지지력의 감소율은 작용하중의 크기에 따라 달라지지 않으며, 진폭과 진동수에 의해 크게 영향을 받았다. 즉, 진폭이 클수록, 진동수가 적을수록 지지력은 크게 감소되었다. 관내토 폐색응력의 감소양상은 진동의 종류에 따라 크게 달랐다. 유사 지진 진동에 의한 관내토 폐색응력의 감소는 작용하중의 크기에 상관없이 말뚝 선단으로 부터 약 3.0D, 이내의 관내 토에서 발생되었다. Sine정현파 진동에 의한 판내토 폐색응력의 감소는 말뚝 선단으로 부터 약 1.0D,이내의 관내토에서 크게 감소하고, 1.0-3.0D,의 관내토 부분에서는 거의 감소되지 않았다. 또한, 관내토 폐색력은 크게 감소되어졌고, 작용하중의 크기에 따라 감소율도 크게 달랐다.

  • PDF

폐기물 매립지반에서 PG Pile의 지반지지력 특성 (A Characteristics of Bearing Capacity by PG Pile on Waste Landfill)

  • 천병식;최춘식
    • 한국철도학회논문집
    • /
    • 제3권4호
    • /
    • pp.213-218
    • /
    • 2000
  • Waste landfill is so loose that it may cause the insufficient bearing capacity and the differential settlement. And so, characteristics and conditions of the ground should be considered in applications of ground improvement in waste landfill. In this paper, analysis of field tests as the static loading test and the bearing capacity test were performed. In result, PG(Pack Grouting) pile method is proved effective and economic, because it could bring about the increase of end bearing capacity, the prevention of differential settlement and increase of density by expansion of pile.

  • PDF

폐색정도를 고려한 개단말뚝의 지지력 산정 (Estimation of Bearing Capacity for Open-Ended Pile Considering Soil Plugging)

  • 백규호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.397-404
    • /
    • 2002
  • The bearing capacity of open-ended piles is affected by the degree of soil plugging, which is quantified by the IFR. There is not at present a design criterion for open-ended piles that explicitly considers the effect of IFR on pile load capacity In order to investigate this effect, model pile load tests using a calibration chamber were conducted on instrumented open-ended piles. The results of these tests show that the IFR increases with increasing relative density and increasing horizontal stress of soils. The unit base and shaft resistances decrease with increasing IFR. Based on the results of the model pile tests, new empirical relations for base load capacity and shaft load capacity of open-ended piles are proposed. In order to check the accuracy of predictions made with the proposed equations, the equations were applied to the full-scale pile load test preformed in this study, Based on the comparisons with the pile load test results, the proposed equations appear to produce satisfactory predictions.

  • PDF

군쇄석다짐말뚝의 지지력 특성에 관한 연구 (A Study on Bearing Capacity Characteristics of Group Crushed-Stone Compaction Piles)

  • 황근배;이민희;신현철;최용규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.705-712
    • /
    • 2005
  • Among soft ground treatment methods with granular soil used in domestic, the sand compaction pile method has been utilized greatly, but, as a result of exhaustion of sand and increase of unit cost, a necessity of an alternative method is suggested. In this study, the static load tests for group crushed-stone compaction piles which were constructed at in-situ site were performed. Pile diameter was 700mm and area of loading plates were changed. The static load tests of single and group piles were performed for area replacement ratio of 20, 30 and 40%. Based on test results, bearing capacity of group crushed-stone compaction pile were estimated. The more both single pile and group pile increase, the more yield bearing capacity tended to increase. Also, the yield bearing capacity of a group pile is about 50% less than the yield bearing capacity of a single pile. If the ground reinforced with the crushed-stone compaction pile is replacement ratio of $20{\sim}40%$, RIYB of both single pile and group pile increases qualitative tendency of linear more than original ground

  • PDF

Pile bearing capacity prediction in cold regions using a combination of ANN with metaheuristic algorithms

  • Zhou Jingting;Hossein Moayedi;Marieh Fatahizadeh;Narges Varamini
    • Steel and Composite Structures
    • /
    • 제51권4호
    • /
    • pp.417-440
    • /
    • 2024
  • Artificial neural networks (ANN) have been the focus of several studies when it comes to evaluating the pile's bearing capacity. Nonetheless, the principal drawbacks of employing this method are the sluggish rate of convergence and the constraints of ANN in locating global minima. The current work aimed to build four ANN-based prediction models enhanced with methods from the black hole algorithm (BHA), league championship algorithm (LCA), shuffled complex evolution (SCE), and symbiotic organisms search (SOS) to estimate the carrying capacity of piles in cold climates. To provide the crucial dataset required to build the model, fifty-eight concrete pile experiments were conducted. The pile geometrical properties, internal friction angle 𝛗 shaft, internal friction angle 𝛗 tip, pile length, pile area, and vertical effective stress were established as the network inputs, and the BHA, LCA, SCE, and SOS-based ANN models were set up to provide the pile bearing capacity as the output. Following a sensitivity analysis to determine the optimal BHA, LCA, SCE, and SOS parameters and a train and test procedure to determine the optimal network architecture or the number of hidden nodes, the best prediction approach was selected. The outcomes show a good agreement between the measured bearing capabilities and the pile bearing capacities forecasted by SCE-MLP. The testing dataset's respective mean square error and coefficient of determination, which are 0.91846 and 391.1539, indicate that using the SCE-MLP approach as a practical, efficient, and highly reliable technique to forecast the pile's bearing capacity is advantageous.

H-pile의 지지력 특성 및 동역학적 공식의 신뢰도 평가 (Characteristics of Bearing Capacity and Reliability-based Evaluation of Pile-Driving Formulas for H Pile)

  • 오세욱;이준대
    • 한국안전학회지
    • /
    • 제18권1호
    • /
    • pp.81-88
    • /
    • 2003
  • Recently, pile foundations were constructed in rough or soft ground than ground of well condition thus it is important that prediction of ultimate bearing capacity and calculation of proper safety factor applied pile foundation design. This study were performed to dynamic loading tests for the thirty two piles at four different construction sites and selected pile at three site were performed to static loading tests and then compare with measured value and value of static and dynamic loading tests. The load-settlement curve form the dynamic loading tests by CAPWAP was very similar to the results obtained from the static load tests. Based on dynamic and static loading tests, the reliability of pile-driving formula were analyzed and then suggested with proper safety factor for prediction of allowable bearing capacity in this paper.

Effects of pile geometry on bearing capacity of open-ended piles driven into sands

  • Kumara, Janaka J.;Kurashina, Takashi;Kikuchi, Yoshiaki
    • Geomechanics and Engineering
    • /
    • 제11권3호
    • /
    • pp.385-400
    • /
    • 2016
  • Bearing capacity of open-ended piles depends largely on inner frictional resistance, which is influenced by the degree of soil plugging. While a fully-plugged open-ended pile produces a bearing capacity similar to a closed-ended pile, fully coring (or unplugged) pile produces a much smaller bearing capacity. In general, open-ended piles are driven under partially-plugged mode. The formation of soil plug may depend on many factors, including wall thickness at the pile tip (or inner pile diameter), sleeve height of the thickened wall at the pile tip and relative density. In this paper, we studied the effects of wall thickness at the pile base and sleeve height of the thickened wall at the pile tip on bearing capacity using laboratory model tests. The tests were conducted on a medium dense sandy ground. The model piles with different tip thicknesses and sleeve heights of thickened wall at the pile tip were tested. The results were also discussed using the incremental filling ratio and plug length ratio, which are generally used to describe the degree of soil plugging. The results showed that the bearing capacity increases with tip thickness. The bearing capacity of piles of smaller sleeve length (e.g., ${\leq}1D$; D is pile outer diameter) was found to be dependent on the sleeve length, while it is independent on the sleeve length of greater than a 1D length. We also found that the soil plug height is dependent on wall thickness at the pile base. The results on the incremental filling ratio revealed that the thinner walled piles produce higher degree of soil plugging at greater penetration depths. The results also revealed that the soil plug height is dependent on sleeve length of up to 2D length and independent beyond a 2D length. The piles of a smaller sleeve length (e.g., ${\leq}1D$) produce higher degree of soil plugging at shallow penetration depths while the piles of a larger sleeve length (e.g., ${\geq}2D$) produce higher degree of soil plugging at greater penetration depths.