• Title/Summary/Keyword: Pile bearing capacity

Search Result 535, Processing Time 0.024 seconds

Axial Behavior of Non-Displacement Tapered Piles in Sand (모래지반에서 비배토 테이퍼말뚝의 연직거동 특성)

  • Paik, Kyu-Ho;Lee, Jun-Hwan;Kim, Dae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.35-45
    • /
    • 2007
  • It is known that the response of piles is affected by the shape of pile as well as soil conditions. In order to investigate the characteristics of the axial responses and bearing capacities of non-displacement tapered and cylindrical piles in sands, 12 model pile load tests using a calibration chamber were conducted on model tapered and cylindrical piles, which were specially manufactured to measure the base and shaft load capacities independently. Results of the model tests showed that the shaft load of tapered piles continuously increased with pile settlement, whereas the shaft load of cylindrical piles reached ultimate values at a settlement equal to 4% of pile diameter. Therefore, taper piles have greater shaft loads than cylindrical one at the same settlement. It is also observed that the total load capacity of tapered piles is lower than cylindrical piles for dense sand but is greater than that of cylindrical piles for medium sand. The ultimate unit base resistance of tapered piles was greater than that of cylindrical piles for lateral earth pressure ratio greater than 0.4, and the shaft resistance was greater than that of cylindrical piles irrespective of lateral earth pressure ratio.

Load Sharing Ratio of Raft in Piled Raft on Granular Soils by Model Test (모형실험에 의한 조립토 지반에 설치된 말뚝지지 전면기초에서 래프트의 하중분담률)

  • Kwon, Ohkyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.3
    • /
    • pp.67-75
    • /
    • 2007
  • This study was undertaken in order to investigate the load bearing capacity of raft in a piled raft through the laboratory model tests, the numerical and analytical analyses. The model tests were conducted about a piled raft, the free-standing pile group, a single pile, as well as a shallow foundation under equal conditions. The pile spacing and length, group type and soil conditions were varied in the laboratory model tests. The experimental results were compared with those by the commercial program, DEFPIG, conventional methods and Phung's method. According to this study, the behavior of piled raft was affected by pile spacing, length and soil conditions. Phung's method proved to be reliable for estimating the experimental results.

  • PDF

Evaluation of Skin Friction on Large Drilled Shaft (대구경 현장타설말뚝의 주면 마찰력 평가)

  • Hong Won-Pyo;Yea Geu-Guwen;Lee Jae-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.93-103
    • /
    • 2005
  • Both static pile load test with load transfer measuring system and the pile dynamic load test are performed to estimate the skin friction and behavior characteristics of a large drilled shaft. And the numerical modeling of large drilled shaft is performed by applying the FDM program. Since the magnitude of friction resistance depends on the relative displacement between soil and shaft, load and displacement at the arbitrary depth along the large drilled shaft are estimated to analyze the correlation. According to the measuring results of load transfer, unit skin friction along the large drilled shaft was fully mobilized at gravel layer in the middle of shaft and the frictional resistance transmitted to bedrock was relatively small. Also, even for the same drilled shaft, the results of PDA and static load test are different with each other and the difference is discussed.

Driveability and Bearing Capacity Characteristics Analysis of 590 MPa Grade High Strength Steel Pipe Pile at Songdo Area through Dynamic Load Tests (동재하시험결과 분석을 통한 송도지역 590MPa급 고강도 강관말뚝의 항타관입성 및 지지력 특성 분석)

  • La, Seung-Min;Hong, Bong-Kyun;Yoo, Han-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.2
    • /
    • pp.81-90
    • /
    • 2011
  • Domestic usage of high strength steel for pile has been limited to steel with yield strength (YS) of 490 MPa. However, design and construction cases abroad show beneficial usage of steel pipe with YS ranging in 500~700 MPa. In this study, YS 590 MPa steel pipe has been tested for driven pile foundation in Songdo area. Pile dynamic analysis (PDA) was carried out for 18 piles of which 16 piles have been reviewed for comparison of the PDA test results with those of GRLWeap analysis using SPT N value. Back analysis of PDA analysis was also carried out to narrow the deviation of standard SPT N value used in GRLWeap analysis. A regression equation is suggested for the shaft and toe resistance according to SPT N values for future GRLWeap analysis that can be used in the designing stage at Songdo area.

Application on Pile Under Lateral Load in Multi Layered Ground Using the Strain Wedge Model (변형률 쐐기모델을 이용한 다층지반에서의 횡하중을 받는 말뚝의 적용성 평가)

  • Kim, Hongtaek;Lee, Jungjae;Chung, Jongmin;Yoon, Changjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.159-165
    • /
    • 2009
  • The Strain Wedge Model is useful method for horizontal bearing capacity calculation considering interaction of pile and ground deformation. However, application case of the Strain Wedge Model is rare and the strain wedge model of plenty of verification is needed on multi layered ground in Korea. In this present study, to conduct laboratory model test and numerical analysis for verification of Strain Wedge Model, adapt model that could describe the interaction of pile and ground deformation on multi layered ground. In model test, it was performed to estimate the behavior characteristics on pile under lateral load and to analyze the relationship between load and deformation. In addition, it was fulfilled to measure the skin friction on pile using strain gauge and to decide the ground passive resistance wedge using skin friction. Numerical analysis was performed to verify laboratory model test results.

  • PDF

Evaluation of Load Transfer Characteristics of Barrette Pile Based on Bi-directional Loading Tests (양방향 재하시험결과를 활용한 바렛말뚝의 하중전이특성 평가)

  • Park, Seong Wan;Lim, Dae Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2C
    • /
    • pp.41-49
    • /
    • 2009
  • Due to the increased size of civil infrastructure and the cost of materials, the needs exists for utilizing large sized cast-inplace piles in lieu of conventional precast piles. Among them, the barrette pile has become more commonly used in fields where a diaphragm wall is the retaining wall, to improve workability and economical efficiency, and to ensure hole stability under deep soil layers. In this paper, the bearing capacity and displacement characteristics of the barrette pile are evaluated by using the bi-directional loading test data obtained from four different sites. In addition, the design value of pile shaft resistance, ${\beta}$, is assessed with previous literatures and load transfer analysis. Finally, numerical analyses were performed to analyze the load-displacement behavior, and the interface effect on the piles, using the 3-dimensional finite element method.

Estimating pile setup parameter using XGBoost-based optimized models

  • Xigang Du;Ximeng Ma;Chenxi Dong;Mehrdad Sattari Nikkhoo
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.259-276
    • /
    • 2024
  • The undrained shear strength is widely acknowledged as a fundamental mechanical property of soil and is considered a critical engineering parameter. In recent years, researchers have employed various methodologies to evaluate the shear strength of soil under undrained conditions. These methods encompass both numerical analyses and empirical techniques, such as the cone penetration test (CPT), to gain insights into the properties and behavior of soil. However, several of these methods rely on correlation assumptions, which can lead to inconsistent accuracy and precision. The study involved the development of innovative methods using extreme gradient boosting (XGB) to predict the pile set-up component "A" based on two distinct data sets. The first data set includes average modified cone point bearing capacity (qt), average wall friction (fs), and effective vertical stress (σvo), while the second data set comprises plasticity index (PI), soil undrained shear cohesion (Su), and the over consolidation ratio (OCR). These data sets were utilized to develop XGBoost-based methods for predicting the pile set-up component "A". To optimize the internal hyperparameters of the XGBoost model, four optimization algorithms were employed: Particle Swarm Optimization (PSO), Social Spider Optimization (SSO), Arithmetic Optimization Algorithm (AOA), and Sine Cosine Optimization Algorithm (SCOA). The results from the first data set indicate that the XGBoost model optimized using the Arithmetic Optimization Algorithm (XGB - AOA) achieved the highest accuracy, with R2 values of 0.9962 for the training part and 0.9807 for the testing part. The performance of the developed models was further evaluated using the RMSE, MAE, and VAF indices. The results revealed that the XGBoost model optimized using XGBoost - AOA outperformed other models in terms of accuracy, with RMSE, MAE, and VAF values of 0.0078, 0.0015, and 99.6189 for the training part and 0.0141, 0.0112, and 98.0394 for the testing part, respectively. These findings suggest that XGBoost - AOA is the most accurate model for predicting the pile set-up component.

A novel preloading method for foundation underpinning for the remodeling of an existing building

  • Wang, Chengcan;Han, Jin-Tae;Kim, Seokjung;Jang, Young-Eun
    • Geomechanics and Engineering
    • /
    • v.24 no.1
    • /
    • pp.29-42
    • /
    • 2021
  • The utilization of buildings can be improved by extending them vertically. However, the added load of the extension might require building foundations to be underpinned; otherwise, the loads on the foundations might exceed their bearing capacity. In this study, a preloading method was presented aiming at transferring partial loads from existing piles to underpinning piles. A pneumatic-type model preloading device was developed and used to carry out centrifuge experiments to evaluate the load-displacement behavior of piles, the pile-soil interaction during preloading, and the additional loading caused by vertical extension. The results showed that the preloading devices effectively transfer load from existing piles to underpinning piles. In the additional loading test of group piles, the load-sharing ratio of a pile increased with its stiffness. The load-sharing ratio of a preloaded micropile was less than that of a non-preloaded micropile as a result of the reduction in axial stiffness caused by preloading before additional loading. Therefore, a slight reduction of the load-sharing capacity of an underpinning pile should be considered if the preloading method is applied. Further, two full scale preloading devices was developed. The devices preload underpinning piles and thereby produce reaction forces on a reaction frame to jack existing piles upward, thus transferring load from the existing piles to the underpinning piles. Specifically, screw-type and hydraulic-jack type devices were developed for the practical application of foundation underpinning during vertical extension, and their operability and load transfer effect verified via full-scale structural experiments.

Behavior Characteristics of Micropile Following the Embedded Condition (근입조건에 따른 마이크로파일의 거동특성)

  • Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.6
    • /
    • pp.19-25
    • /
    • 2020
  • In the recent downtown works, there are frequent cases where the work on existing piles is impossible due to the influence from lack of space and surrounding environment. In such cases, there has been growing cases of using the micropile method that is available to work with the small equipment and asserts the bearing capacity of the existing piles. The micropile method is a type of drilled shaft with the diameter of a pile to be around 75 mm~300 mm that, even for a case where it has certain surrounding structure, foundation and spatial obstacle, there is almost no work difficulty and the work is feasible under all types of soil conditions. In addition, the work can be done in places where the ceiling of the building is low with less vibration and noise in the work process that such method is significantly used for foundation reinforcement of existing buildings. With respect to the motion characteristics that are changed depending on the foundational characteristics or when the micropile is applied with compression or tensile force, there is very few studies conducted. Therefore, under this study, through the data analysis of the field loading test regarding the micropile worked in the fields, it clarifies the settlement and characteristics of bearing capacity following the embedded condition of the ingredients and piles that consist the foundation if the compression and tensile force are applied to the micropile, and by facilitating the statistical analysis program, SAS, to carry out the analysis on the main elements influencing on settlement of the micropile and bearing capacity.

Characteristics of Bearing Capacity for SCP Composite Ground reinforced by the Sheet piles Restraining Deformation (변위억제형 Sheet pile 설치에 따른 SCP복합지반의 지지력 특성)

  • Park, Byung-Soo
    • Journal of Navigation and Port Research
    • /
    • v.30 no.8 s.114
    • /
    • pp.711-719
    • /
    • 2006
  • A series of geotechnical centrifuge model tests and numerical modelling have been performed to study engineering characteristics of the composite ground reinforced by both the Sand Compaction Piles(SCPs) and the deformation-reducing sheet piles. The research has covered several key issues such as the load-settlement relation, the stress concentration ratio and the final water content of the ground Totally three centrifuge tests have been conducted by changing configuration of the sheet piles, i.e., a test without the sheet pile, a test with the sheet pile at a single side and a test with the sheet piles at the both sides. In the model tests, a vertical load was applied in-flight on the ground surface. On the other hand, class-C type numerical modelling has been performed by using the SAGE-CRISP to compare the centrifuge test results using an elasto-plastic model for SCPs and the Modified Cam Clay model for the soft clay. It has been found that the sheet piles can restraint failure of foundation, thereby increasing yield stress of the ground. The stress concentration ratio was in the range of $2{\sim}4$. In addition, numerical analysis results showed reductions both in the ground heave($20{\sim}30%$) and in the horizontal movement($28{\sim}43%$), demonstrating the deformation-reducing effect of the sheet piles.