• Title/Summary/Keyword: Pile Drilling

Search Result 36, Processing Time 0.031 seconds

Bearing Capacity Characteristics of Drilled Shafts using Percussion Rotary Drilling (PRD 공법을 이용한 매입말뚝의 지지력 특성)

  • 윤형준;정국상;정상섬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.307-314
    • /
    • 2001
  • The bearing capacity of drilled shafts that take excavation by Percussion Rrotary Drilling(PRD) into consideration was evaluated using static and dynamic pile load tests. The emphasis was on quantifying the allowable bearing capacity and point load-transfer at the pile tip on seven instrumented steel piles. Of the seven instrumented piles, five piles are placed to the bottom of the excavation by rotary and pushing into the final depth of the excavation, as opposed to the two driven piles. Based on the results obtained, it is shown that the skin friction mobilized by PRD is much greater than point resistance, whereas in driven piles, the point resistance is greater than skin friction. It is also found that much greater pile capacity was proved in the case of drilled shafts, compared to the driven piles and thus, the excavation by rotary drilling gives reliable pile capacity required to design axially loaded piles.

  • PDF

Analysis and Countermeasures for the Trouble Factors of the Spot Installation Pile Using Machine Excavation Method (기계굴착공법을 적용한 현장타설말뚝 시공시 부조화 발생요인 분석 및 대응 방안)

  • Park, Hong-Tae;Son, Chang-Baek
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.75-83
    • /
    • 2009
  • Although a range of machine excavation methods are in wide use, including casing, earth drill and reverse circulation drilling, deterioration in pile quality and faulty construction can be often found these days because of trouble in the construction field. For this study, research was conducted in the form of a survey of construction engineers working in the field in order to identify the types and the causes of trouble by focusing on all casing, earth drilling and reverse circulation drilling. By analyzing the causes of trouble, countermeasures could be presented. The data and the analysts presented in this study could be effectively used for minimizing trouble in future machine excavation work during construction.

Estimating of Optimal Allowed Distance for Reducing Vibration and Noise Problems by Pile Driving after Drilling Method in Deep Foundation Work (천공 후 말뚝타격공법의 진동 $\cdot$ 소음 문제 해소를 위한 적정 이격거리 산정 방안 연구)

  • Park Hong-Tae;Kang Lee-Seok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.4 s.26
    • /
    • pp.152-163
    • /
    • 2005
  • Pile driving work causes a vibration problem in the construction site using pile foundation and often causes civil affairs by construction noise around the construction site. For the vibration and noise problems, the driving after drilling method rather than the direct driving method is being generalized for reducing vibration and noise. However, this method also causes civil affairs when the driving work is operated in adjacent area. This study suggests a criterion for evaluating an optimal allowed distance for pile driving work by the driving after drilling method. Actual surveys of vibration and noise for pile driving work in seven construction sites were used for developing regression analysis equations. The results can be a standard to estimate the allowed distance to avoid vibration and noise problems in pile driving work for deep foundation.

Drivability Monitoring of Large Diameter Underwater Steel Pipe Pile Using Pile Driving Analyzer. (수중 대구경강관말뚝의 항타관입성 모니터링을 위한 PDA 적용 사례)

  • Kim, Dae-Hak;Park, Min-Chul;Kang, Hyung-Sun;Lee, Won-Je
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.11-19
    • /
    • 2004
  • When pile foundation constructed by driving method, it is desirable to perform monitoring and estimation of pile drivability and bearing capacity using some suitable tools. Dynamic Pile Monitoring yields information regarding the hammer, driving system, and pile and soil behaviour that can be used to confirm the assumptions of wave equation analysis. Dynamic Pile Monitoring is performed with the Pile Driving Analyser. The Pile Driving Analyser (PDA) uses wave propagation theory to compute numerous variables that fully describe the condition of the hammer-pile-soil system in real time, following each hammer impact. This approach allows immediate field verification of hammer performance, driving efficiency, and an estimate of pile capacity. The PDA has been used widely as a most effective control method of pile installations. A set of PDA test was performed at the site of Donghea-1 Gas Platform Jacket which is located east of Ulsan. The drilling core sediments of location of jacket subsoil are composed of mud and sand, silt. In this case study, the results of PDA test which was applied to measurement and estimation of large diameter open ended steel pipe pile driven by underwater hydraulic hammer, MHU-800S, at the marine sediments were summarized.

  • PDF

Investigation on Noise Characteristics of Pile Driving Operation and Design of a Low-noise Pile Cap Based on the Scale Model Experiment (항타공법에 의한 발생 소음 특성 분석 및 축소 모형 실험을 이용한 저소음 말뚝 캡의 설계)

  • 이종화;이정권;이기홍;정승창
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.445-448
    • /
    • 2001
  • Noise radiated from pile driving operation is one of major sources of community noise pollution and thus its operation method is strictly restricted by regulations. Although the drilling method is now used been commonly used in urban areas because of its activity, the benefit of low noise decreases due to high working cost. In the present work, noise characteristics of pile driving operation are carried out. Based on the study result, a low-noise pile cap for driven piles is developed in order to satisfy both the noise level restriction and the economical efficiency. Effects of pile cap are investigated by a scale model experiment, which is focused on the variation of impact force and sound pressure level. The results show a good possibility of noise reduction by an appropriately designed pile cap.

  • PDF

Polymer Base Bored Pile in Bangkok Subsoils

  • Teparaksa, Wanchai
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.407-426
    • /
    • 2008
  • The bentonite slurry has been used as the stabilize suspension for wet process bored pile construction in Thailand. The bentonite suspension has benefit on filtration in the sand layer, but it creates thick cake film along pile shaft and loose sedimentation at pile toe. The base grouting technique was widely used to rectify the soft base or loose sedimentation problem of bored pile. The base grouting technique was not increased only end bearing capacity, but was also more increase in skin friction capacity of the bored piles. The comprehensive researches on base grouting was carried out by installing PVC casing inside the shaft to allow the drilling through the pile base in order to collect the soil sample below the pile tip. The polymer based slurry recently was used to replace the bentonite slurry to overcome the thick cake film along pile shaft as well as loose sedimentation at pile toe. The extent research on polymer slurry by physical model was performed to verify the real behavior of polymer. The appropriate mixing ratio of polymer was proposed. The design skin friction coefficient, $\beta$ and end bearing coefficient, Nq, for sand layer base on fully instrumented tested pile were proposed. The application on remedial of the lose capacity bored pile with large displacement in Bangladesh was proposed and discussed.

  • PDF

Drivability of Offshore Pile Foundation at Ieodo Ocean Research Station (이어도 해양과학기지 말뚝기초의 항타 관입성 연구)

  • Shim, Jae-Seol;Yoon, Gil-Lim;Lee, Seung-Jun
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.373-384
    • /
    • 2003
  • When pile foundation is constructed by dynamic method, it is desirable to perform monitoring of drivability with pile penetration. Dynamic pile monitoring yields information regarding driving hammer, cushion, pile and soil behaviour that can be used to confirm the assumptions of wave equation analysis. In this study, dynamic monitoring of the steel pipe pile was performed with Pile Driving Analyser (PDA). The PDA utilizes the wave propagation theory to compute numerous variables which describe the conditions of the hammer-pile-soil system in real-time and following each hammer impact. This approach allows immediate field verification of hammer performance, driving efficiency, and estimation of pile bearing capacity. A series of PDA test were performed at the Ieodo Ocean Research Station (IORS) located in southeast of Marado, a southernmost small island south of Jeju Island. The drilling core sediments of Ieodo subsoil are composed of mud and sand, showing lamination and wavy or lenticular bedding, which were often bioturbated. This paper summarizes the results of PDA tests which were applied in measurement and estimation of large diameter open ended steel pipe pile driven by steam hammer, Vulcan-560 and MRBS-4600, at the marine sediments.

Analysis of Composite Pile Behavior under Lateral Loadings (수평재하에 따른 복합말뚝의 거동분석)

  • Hwang, Taik-Jean
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1396-1404
    • /
    • 2012
  • A composite pile consisted of a concrete lower part with a steel tubular pile at upper part was installed by pre-drilling method. Seven pairs of strain gauges and inclinometer were attached on the pile in order to measure stresses and displacement along the pile during the lateral loading test. The results of instrumentation were analyzed using various theoretical approaches. The back analysis showed that the measured stresses were smaller than those of the calculated. The maximum stress is measured at the steel upper part and decreased rapidly with depth of the pile. The calculated lateral displacement along the pile provide very good agreement with the measured values if the coefficient of subgrade reaction is selected properly. The design concept of a composite pile is verified by the measured stresses and displacement which is within the tolerable limits of the pile.

A Study of Correlation between SPT N-value and Exerted Electrical Energy Required for Ground Drilling II : Application Study (Field Pilot Test) (지반굴착에 소요되는 전기에너지와 표준관입시험 N값과의 상관관계 연구 II : 적용성 평가(현장시험시공))

  • Choi, Changho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.4
    • /
    • pp.55-62
    • /
    • 2012
  • In this application study, field pilot tests were performed to evaluate the validity of a proposed formula between the exerted electrical energy and SPT N-value based on the result of the basic study. Measurement sensors and recording system were developed to obtain exerted motor current and drilling depth in a field. By using the correlation formula proposed in the basic study, the measured motor current and boring speed were applied to predict SPT N-value and the predicted N-values were compared to SPT N-value of site exploration. From the comparisons it is verified that the exerted electrical energy to bore ground might be used to predict SPT N-value and pile tip location.

Experimental Study on the Effect of Drilling Fluid with Different Mix Designs for Bore Hole Collapse Prevention (시추 안정액 배합설계에 따른 공벽 붕괴방지 효과에 관한 실험적 연구)

  • Yoo, Chung-Sik;Choi, Jung-Hyuk;Han, Yun-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.1
    • /
    • pp.15-24
    • /
    • 2015
  • This paper presents the results of a reduced-scale physical model investigation into the effect of drilling fluid with different mix designs for bore hole collapse prevention. The bore hole collapse prevention mechanism for the bentonite based drilling fluid was first discussed together with the effect of conditioning with different additives on engineering characteristics of bentonite based drilling fluid. Reduced-scale model tests were then carried out considering field procedures for cases with a decomposed granitic soil with 20% fines and a sand with various drilling fluids with different mix designs. The results indicated that the addition of polymer to the bentonite based drilling fluid decreases the amount of drilling fluid injected, the drilling fluid infiltration thickness and increases the final depth of excavation. Also revealed is that the effect of polymer on the performance of drilling fluid is more pronounced in the decomposed granite soil with 20% fines than the sand. Practical implications of the findings from this study are discussed in great detail.