• 제목/요약/키워드: Piezoelectric surface

검색결과 407건 처리시간 0.026초

산업용 압전 잉크젯 헤드의 구동신호에 따른 특성 (The Effects of Driving Waveform for Piezoelectric Drop On Demand Industrial Inkjet Head)

  • 김영재;유영석;심원철;박창성;정재우;오용수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권8호
    • /
    • pp.417-422
    • /
    • 2006
  • This paper presents the effect of driving waveform for piezoelectric bend mode inkjet printhead with optimized mechanical design. Experimental and theoretical studies on the applied driving waveform versus jetting characteristics were performed. The inkjet head has been designed to maximize the droplet velocity, minimize voltage response of the actuator and optimize the firing frequency to eject ink droplet. The head design was carried out by using mechanical simulation. The printhead has been fabricated with Si(100) and SOI wafers by MEMS process and silicon direct bonding method. To investigate how performance of the piezoelectric ceramic actuator influences on droplet diameter and droplet velocity, the method of stroboscopy was used. Also we observed the movement characteristics of PZT actuator with LDV(Laser Doppler Vibrometer) system, oscilloscope and dynamic signal analyzer. Missing nozzles caused by bubbles in chamber were monitored by their resonance frequency. Using the water based ink of viscosity of 4.8 cps and surface tension of 0.025 N/m, it is possible to eject stable droplets up to 20 kHz, 4.4 m/s and above 8 pl at the different applied driving waveforms.

음향 벽을 이용한 배열형 압전형 초음파 변환기의 음향 간섭 수준 감소를 위한 연구 (A Study for Reducing the Acoustic Cross Talk Level in an Array Type Piezoelectric Ultrasonic Transducer Using Acoustic Wells)

  • 김영신;노용래
    • 한국음향학회지
    • /
    • 제22권3호
    • /
    • pp.208-216
    • /
    • 2003
  • 의료 진단용으로 널리 사용되는 1차원 배열형 압전 초음파 변환기는 소자들간의 음향 간섭에 의해 성능이 저하된다. 본 연구에서는 기존의 커프로 효과를 볼 수 없는 변환기 표면을 따라 전파하는 음파로 인한 간섭을 감소하기 위해 음향 벽 설치를 제안하고, 유한 요소 해석법을 이용하여 convex 1차원 배열형 압전 초음파 변환기에 설치한 음향 벽의 형상. 크기 및 재질에 따른 음향 간섭 수준을 분석하였다. 시뮬레이션 결과는 소자들간의 음향 간섭을 최소화하는 초음파 변환기의 최적화 설계를 위해 매우 유용한 정보로 사용될 것으로 기대된다.

굽힘 압전 복합재료 작동기의 전기적 피로 거동 (Electric Fatigue Behavior of a Bending Piezoelectric Composite Actuator)

  • 우성충;구남서
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.362-367
    • /
    • 2008
  • In the present work, we address electric fatigue behavior in bending piezoelectric actuators using an acoustic emission technique. Electric cyclic fatigue tests have been performed up to ten million cycles on the fabricated specimens. To confirm the fatigue damage onset and its pathway, the source location and distributions of the AE behavior in terms of count rate are analyzed over the fatigue range. It is concluded that electric cyclic loading leads to fatigue damages such as transgranular damages and intergranular cracking in the surface of the PZT ceramic layer, and intergranular cracking even develops into the PZT inner layer, thereby degrading the displacement performance. The electric-induced fatigue behavior seems to show not a continuous process but a step-by-step process because of the brittleness of PZT ceramic. Nevertheless, this fatigue damage and cracking do not cause the final failure of the bending piezoelectric actuator loaded up to 107 cycles. Investigations of the AE behavior and the linear AE source location reveal that the onset time of the fatigue damage varies considerably depending on the existence of a glass-epoxy protecting layer.

  • PDF

압전세라믹 냉각홴에 의한 강제 공랭 모듈 주위의 열전달특성 (Heat Transfer Characteristics Around a Surface-Mounted Module Cooled by Piezoelectric Fan)

  • 박상희;박규진;최성대
    • 대한기계학회논문집B
    • /
    • 제28권7호
    • /
    • pp.780-788
    • /
    • 2004
  • This paper reports the fluid flow and heat transfer around a module cooled by forced air flow generated by a piezoelectric(PZT) cooling fan. The fluids are locally accelerated by a flexible PZT fan which deflects inside a fluid transport system of comparatively simple structure mounted on a PCB in a parallel-plate channel(450${\times}$80${\times}$700㎣). Input voltages of 20-100V and a resonance frequency of 23㎐ were used to vibrate the cooling fan. Input power to the module was 4W. The fluid flow around the module was visualized by using PIV system. The temperature distributions around a heated module were visualized by using liquid crystal film(LCF). The cooling effect using a PZT fan was independent of the vent area ratios at the channel inlet and was similar to the forced convection cooling. We found that the flow type was Y-shape and the cooling effect was increased by the wake generated by a piezoelectric cooling fan.

Flexible tactile sensor array for foot pressure mapping system in a biped robot

  • Chuang, Cheng-Hsin;Liou, Yi-Rong;Shieh, Ming-Yuan
    • Smart Structures and Systems
    • /
    • 제9권6호
    • /
    • pp.535-547
    • /
    • 2012
  • Controlling the balance of motion in a context involving a biped robot navigating a rugged surface or a step is a difficult task. In the present study, a $3{\times}5$ flexible piezoelectric tactile sensor array is developed to provide a foot pressure map and zero moment point for a biped robot. We introduce an innovative concept involving structural electrodes on a piezoelectric film in order to improve the sensitivity. The tactile sensor consists of a polymer piezoelectric film, PVDF, between two patterned flexible print circuit substrates (FPC). Additionally, a silicon rubber bump-like structure is attached to the FPC and covered by a polydimethylsiloxane (PDMS) layer. Experimental results show that the output signal of the sensor exhibits a linear behavior within 0.2 N ~ 9 N, while its sensitivity is approximately 42 mV/N. According to the characteristic of the tactile sensor, the readout module is designed for an in-situ display of the pressure magnitudes and distribution within $3{\times}5$ taxels. Furthermore, the trajectory of the zero moment point (ZMP) can also be calculated by this program. Consequently, our tactile sensor module can provide the pressure map and ZMP information to the in-situ feedback to control the balance of moment for a biped robot.

Static analysis of rubber components with piezoelectric patches using nonlinear finite element

  • Manna, M.C.;Sheikh, A.H.;Bhattacharyya, R.
    • Smart Structures and Systems
    • /
    • 제5권1호
    • /
    • pp.23-42
    • /
    • 2009
  • In order to reduce vibration or to control shape of structures made of metal or composites, piezoelectric materials have been extensively used since their discovery in 1880's. A recent trend is also seen to apply piezoelectric materials to flexible structures made of rubber-like materials. In this paper a non-linear finite element model using updated Lagrangian (UL) approach has been developed for static analysis of rubber-elastic material with surface-bonded piezoelectric patches. A compressible stain energy function has been used for modeling the rubber as hyperelastic material. For formulation of the nonlinear finite element model a twenty-node brick element is used. Four degrees of freedom u, v and w and electrical potential ${\varphi}$ per node are considered as the field variables. PVDF (polyvinylidene fluoride) patches are applied as sensors/actuators or sensors and actuators. The present model has been applied to bimorph PVDF cantilever beam to validate the formulation. It is then applied to study the smart rubber components under different boundary and loading conditions. The results predicted by the present formulation are compared with the analytical solutions as well as the available published results. Some results are given as new ones as no published solutions available in the literatures to the best of the authors' knowledge.

Piezoelectric nanocomposite sensors assembled using zinc oxide nanoparticles and poly(vinylidene fluoride)

  • Dodds, John S.;Meyers, Frederick N.;Loh, Kenneth J.
    • Smart Structures and Systems
    • /
    • 제12권1호
    • /
    • pp.55-71
    • /
    • 2013
  • Structural health monitoring (SHM) is vital for detecting the onset of damage and for preventing catastrophic failure of civil infrastructure systems. In particular, piezoelectric transducers have the ability to excite and actively interrogate structures (e.g., using surface waves) while measuring their response for sensing and damage detection. In fact, piezoelectric transducers such as lead zirconate titanate (PZT) and poly(vinylidene fluoride) (PVDF) have been used for various laboratory/field tests and possess significant advantages as compared to visual inspection and vibration-based methods, to name a few. However, PZTs are inherently brittle, and PVDF films do not possess high piezoelectricity, thereby limiting each of these devices to certain specific applications. The objective of this study is to design, characterize, and validate piezoelectric nanocomposites consisting of zinc oxide (ZnO) nanoparticles assembled in a PVDF copolymer matrix for sensing and SHM applications. These films provide greater mechanical flexibility as compared to PZTs, yet possess enhanced piezoelectricity as compared to pristine PVDF copolymers. This study started with spin coating dispersed ZnO- and PVDF-TrFE-based solutions to fabricate the piezoelectric nanocomposites. The concentration of ZnO nanoparticles was varied from 0 to 20 wt.% (in 5 % increments) to determine their influence on bulk film piezoelectricity. Second, their electric polarization responses were obtained for quantifying thin film remnant polarization, which is directly correlated to piezoelectricity. Based on these results, the films were poled (at 50 $MV-m^{-1}$) to permanently align their electrical domains and to enhance their bulk film piezoelectricity. Then, a series of hammer impact tests were conducted, and the voltage generated by poled ZnO-based thin films was compared to commercially poled PVDF copolymer thin films. The hammer impact tests showed comparable results between the prototype and commercial samples, and increasing ZnO content provided enhanced piezoelectric performance. Lastly, the films were further validated for sensing using different energy levels of hammer impact, different distances between the impact locations and the film electrodes, and cantilever free vibration testing for dynamic strain sensing.

"Dice와 fill" 방식을 이용한 1-3 압전복합재의 제조와 횡방향 단위 크기에 따른 압전특성 평가 (Fabrication of 1-3 Piezo-composites with a "Dice & Fill" Method and Characterization of Their Piezoelectric Properties as a Function of Lateral Spatial Scale)

  • 김영덕;김광일;정우철;김흥락;김동수
    • 비파괴검사학회지
    • /
    • 제22권4호
    • /
    • pp.354-360
    • /
    • 2002
  • NDT나 의료용 영장장치에 응용되는 압전복합재는 일반적인 세라믹이나 고분자 압전재료에 비하여 많은 장점을 가진다. 이들 응용분야에서는 전기기계결합계수가 높아야 하고 음향임피던스가 낮아야 한다. 그러나, 압전복합재의 횡방향 단위 크기가 조밀하지 못할 경우 횡방향으로 진행하는 판파에 의한 불필요한 진통이 표면에 발생하게 된다. 횡방향 단위 크기와 세라믹 체적비에 따른 압전 특성을 조사하기 위하여 PMN-PZT 세라믹과 Epofix 에폭시로 에폭시의 폭의 달리하면서 1-3형 압전복합채를 제작하였다. 제작된 1-3형 압전복합재의 두께방향 진동모드의 전기기계결합계 수, 음향임피던스는 각각 $0.36{\sim}0.64,\;9.8{\sim}22.7MRayl$ MRayl로 나타났으며, 횡방향 단위크기가 줄어들수록 횡방향 모드 공진 주파수가 증가하였다.

큐렛형 팁을 장착한 압전방식 초음파 치석제거기가 치근대체물 삭제에 미치는 영향 (The Effect of a Piezoelectric Ultrasonic Scaler with Curette Tip on Root Substitute Removal in Vitro)

  • 이영규
    • Journal of Periodontal and Implant Science
    • /
    • 제30권2호
    • /
    • pp.429-442
    • /
    • 2000
  • Based on current evidence in the literature, it is known that endotoxin is a weakly adherent surface phenomenon and that power-driven instruments can be used to accomplish definitive root detoxification and maximal wound healing without overinstrumentation of root and without extensive cementum removal. And one of the newly developed curette tips used with low power of piezoelectric ultrasonic scaler, is effective to remove calculus and not to remove the excessive cementum. The purpose of this study is therefore, to assess the influence of ultrasonic power and various working parameters on root substitute removal when instrumentation is performed with the curette tip on piezoelectric ultrasonic scaler. This study assessed defect depth, width and area resulting from instrumentation using a piezoelectric ultrasonic scaler with a curette type tip in vitro to acrylic resin block as a root substitute. The working parameters was standardized by the sledge device which controls lateral force(0.5 N, 1 N, 2 N) and instrumentation time(5 sec, 10 sec, 20 sec) and power setting was adjusted 0,2,4,8 in P mode. Power setting had the greatest influence on defect depth compared to lateral force and instrumentation time(standardized regression parameter estimates${\pm}$standard error, $0.37{\pm}0.02$, $0.19{\pm}0.02$, $0.07{\pm}0.02$). The effects on defect area also greatest for power setting($0.57{\pm}0.03$) compared to lateral force and instrumentation time($0.33{\pm}0.03$, $0.12{\pm}0.03$). The effect of the power setting on the defect width($0.15{\pm}0.01$) is not so great as defect depth or defect area compared to lateral force($0.12{\pm}0.01$) and effect of instrumentation time is minimal($0.02{\pm}0.01$). It could be concluded that the power setting has the greatest influence on the defect depth and area in curette type tip with low power of piezoelectric ultrasonic device. Many parameters can be adjusted in various situation in clinical use of piezoelectric ultrasonic scaler but the power setting is the first parameter to be adjusted.

  • PDF