• Title/Summary/Keyword: Piezoelectric layer

Search Result 354, Processing Time 0.025 seconds

Adaptive Vibration Control of Smart Composite Structures Using Neuro-Controller (신경망 제어기를 이용한 지능 복합재 구조물의 적응 진동 제어)

  • Youn, Se-Hyun;Han, Jae-Hong;Lee, In
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.832-840
    • /
    • 1998
  • Experimental studies on the adaptive vibration control of composite beams have been performed using a piezoelectric actuator and the neuro-controller. The variations in natural frequencies of the specimen and the actuation characteristics of the piezoelectric actuator according to the delamination in the bonding layer have been studied. In addition, the simulation of adaptive vibration control has been performed for the composite specimens with delaminated piezoelectric actuator using neuro-controller. The hardware for the adaptive vibration control experiment was prepared. A DSP(digital signal processor) has been used as a digital controller. Using neuro-controller, the adaptive vibration control experiment has been performed. The vibration control results using the neuro-controller show that the present neuro-controller has good performance and robustness with the system parameter variations.

  • PDF

Silicon Nitride Cantilever Array Integrated with Si Heaters and Piezoelectric Sensors for Probe-based Data Storage

  • Nam Hyo-Jin;Kim Young-Sik;Lee Caroline Sunyong;Jin Won-Hyeog;Jang Seong-Soo;Cho Il-Joo;Bu Jong-Uk
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.73-77
    • /
    • 2005
  • In this paper, a new silicon nitride cantilever integrated with silicon heater and piezoelectric sensor has been firstly developed to improve the uniformity of the initial bending and the mechanical stability of the cantilever array for thermo-piezoelectric SPM(scanning probe microscopy) -based data storages. This nitride cantilever shows thickness uniformity less than $2\%$. Data bits of 40 nm in diameter were recorded on PMMA film. The sensitivity of the piezoelectric sensor was 0.615 fC/nm after poling the PZT layer. For high speed operation, 128${\times}$128 probe array was developed.

  • PDF

Analysis of Tip Displacement of Cantilever-type Piezoelectric Actuators (외팔보 구조를 갖는 압전 액츄에이터 변위 개선 연구)

  • Yeon, T.H.;Jang, G.H.;Nam, J.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.305-310
    • /
    • 2013
  • This paper analyzes three cantilever-types of piezoelectric actuators of bimorph, unimorph and monomorph in same volume to maximize tip displacement. Tip displacement of each actuator is theoretically derived by using beam theory and numerically verified by FEM. It also investigates the tip displacements of each actuator due to the change of elastic layer. It shows that the piezoelectric actuator of bimorph generates the largest tip displacement among them.

  • PDF

Active Vibration Control of a Planar Parallel Manipulator using Piezoelectric Materials (압전소자를 이용한 수평 병렬형 머니풀레이터의 능동 진동 제어)

  • 강봉수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.59-67
    • /
    • 2003
  • This paper presents a new approach for the use of smart materials, piezoelectric materials of PVDF and PZT, for vibration attenuation of a planar parallel manipulator. Since lightweight linkages of parallel manipulators deform under high acceleration/deceleration, an active damper is needed to attenuate vibration due to structural flexibility of linkages. Based on the dynamic model of a planar parallel manipulator, an active damping controller is developed, which consists of a PD feedback control scheme, applied to linear electrical motors, and a linear velocity feedback (L-type) scheme applied to either PVDF layer or PZT actuator(5). Simulation results show that piezoelectric materials yield good damping performance, resulting in precise manipulations of a planar parallel manipulator.

Analysis of Dynamic Behavior of Piezoelectric Atomic Force Microscope Cantilever (압전형 AFM 외팔보의 동적거동 해석)

  • 하성규;박성균;김영호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.187-194
    • /
    • 2002
  • A seven-port impedance and admittance matrices of multilayered piezoelectric beam are derived for the analysis of piezoelectric AFM ( atomic force microscope) cantilever that is partially covered by the piezoelectric layer. The variational principle is used for deriving the extensional and flexural motional equations and the conjugate parameters. Overall impedance matrix of AFM cantilever can be obtained by combining two impedance matrices of the covered and the non-covered. she resonance and antiresonance frequencies and the effective electromechanical coupling factors are calculated using the derived matrices. The results and the three dimensional finite element solutions are compared with the experimental results in other publication.

Development of Curved Shape Piezoelectric Unimorph Using Pre-stressed Substrate (초기응력을 가진 기저구조물을 이용한 곡면형 압전 유니모프 개발)

  • Kang, Lae-Hyong;Lee, Jong-Won;Han, Jae-Hung;Chung, Sang-Joon;Ko, Han-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.94-100
    • /
    • 2009
  • This paper proposes a novel curved shape piezoelectric unimorph using a new fabrication method. Instead of using thermal coefficient mismatch, which has been used for conventional processes for curved shape unimorphs, we used pre-stressed substrates and the room temperature adhesion process. A difference of the mechanical strains between the substrate and the piezoelectric layer makes the final manufactured unimorph get curved. Several performance tests of the proposed unimorph actuators were accomplished and the test results showed the proposed unimorph actuator got comparable actuation capability compared with conventional curved shape actuators.

Analytical solutions to piezoelectric bimorphs based on improved FSDT beam model

  • Zhou, Yan-Guo;Chen, Yun-Min;Ding, Hao-Jiang
    • Smart Structures and Systems
    • /
    • v.1 no.3
    • /
    • pp.309-324
    • /
    • 2005
  • This paper presents an efficient and accurate coupled beam model for piezoelectric bimorphs based on improved first-order shear deformation theory (FSDT). The model combines the equivalent single layer approach for the mechanical displacements and a layerwise modeling for the electric potential. General electric field function is proposed to reasonably approximate the through-the-thickness distribution of the applied and induced electric potentials. Layerwise defined shear correction factor (k) accounting for nonlinear shear strain distribution is introduced into both the shear stress resultant and the electric displacement integration. Analytical solutions for free vibrations and forced response under electromechanical loads are obtained for the simply supported piezoelectric bimorphs with series or parallel arrangement, and the numerical results for various length-to-thickness ratios are compared with the exact two-dimensional piezoelasticity solution. Excellent predictions with low error estimates of local and global responses as well as the modal frequencies are observed.

Design and FEM Analysis of a Circular Piezoelectric Transformer with Crescent-Shaped Input Electrode (Crescent형 입력부를 가진 원형압전변압기의 설계 및 유한요소 해석)

  • Jeong, Seong-Su;Park, Tae-Gone
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1951-1953
    • /
    • 2005
  • This paper present a new disk-type piezoelectric transformer. The input side of the transformer has a crescent-shaped electrode and the output side has a focused poling direction. The piezoelectric transformers operated in each transformer's resonance vibration mode. The electrodes and poling directions on commercially available piezoelectric ceramic disks were designed so that the planar or shear mode coupling factor $(k_p,\;k_{15})$ becomes effective rather than the transverse mode coupling factor ($k_{31}$). A single layer prototype transformer, 26[mm] in diameter and $1.5{\sim}4.0[mm]$ thick, was fabricated, such as step-up ratio, power transformation efficiency and temperature were measured.

  • PDF

Development of Backflow prevented Micropump (역류방지형 유리계 마이크로 펌프 개발)

  • Choi J. P.;Cho K. C.;Kim H. Y.;Kim B. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.229-232
    • /
    • 2005
  • This paper presents the design and fabrication of backflow prevented Micropump using the metal membrane. The Micropump is consisted of the lower plate, metal membrane, upper plate and the piezoelectric-element. The lower plate includes the micro channel and the inlet, outlet of the Micropump. The upper plate includes the micro channel and connects the piezoelectric-element. These plate are fabricated on the Pyrex glass wafer by sandblasting process. The metal membrane does roll of check valve that is prevented backflow of the Micropump. The metal membrane is fabricated on the stainless steel by laser machining. Piezoelectric-element is actuated the Micropump and controlled flowing of fluid. The Micropump is fabricated by bonding process of these multi-layer.

  • PDF

A Portable Skin Elasticity Measuring Device Based on Indentation Method Using Piezoelectric Effect (압전효과를 이용한 압인방식의 휴대용 피부탄력 측정장치)

  • Park, Jun-Young;Kim, Myoung Nam
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1307-1315
    • /
    • 2022
  • In this paper, we proposed and developed a new portable skin elasticity measuring device based on the indentation method using piezoelectric effect. The proposed device is designed to minimize the uncertainty caused by the layer structure of the skin when measuring the elasticity of the skin. And, we developed a piezoelectric-based thin-film pressure sensor that can measure quantitatively and quickly during repeated measurement as a device sensor. To confirm the effectiveness of the proposed measuring device, it was compared with the experimental results of the conventional measuring devices under the same experimental conditions, and statistical correlation analysis was performed between the experimental data of the proposed measuring device and the experimental data of the conventional measuring devices. As a result of the correlation analysis, it was confirmed that the proposed measuring device had a high correlation with the conventional measuring devices. Therefore, it was confirmed that the proposed skin elasticity measuring device was effective.