• Title/Summary/Keyword: Piezoelectric Method

Search Result 1,101, Processing Time 0.031 seconds

Feasibility Study of the Damage Monitoring for Composite Materials by the Piezoelectric Method (압전기법을 이용한 복합재료 손상모니터링의 가능성에 관한 연구)

  • Hwang, Hui-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.918-923
    • /
    • 2008
  • Since crack detection for laminated composites in-service is effective to improve the structural reliability of laminated composites, it have been tried to detect cracks of laminated composites by various nondestructive methods. An electric potential method is one of the widely used approaches for detection of cracks for carbon fiber composites, since the electric potential method adopts the electric conductive carbon fibers as reinforcements and sensors and the adoption of carbon fibers as sensors does not bring strength reduction induced by embedding sensors into the structures such as optical fibers. However, the application of the electric method is limited only to electrically conductive composite materials. Recently, a piezoelectric method using piezoelectric characteristics of epoxy adhesives has been successfully developed for the adhesive joints because it can monitor continuously the damage of adhesively bonded structures without producing any defects. Polymeric materials for the matrix of composite materials have piezoelectric characteristics similarly to adhesive materials, and the fracture of composite materials should lead to the fracture of polymeric matrix. Therefore, it seems to be valid that the piezoelectric method can be applied to monitoring the damage of composite materials. In this research, therefore, the feasibility study of the damage monitoring for composite materials by piezoelectric method was conducted. Using carbon fiber epoxy composite and glass fiber composite, charge output signals were measured and analyzed during the static and fatigue tests, and the effect of fiber materials on the damage monitoring of composite materials by the piezoelectric method was investigated.

Inversion of Material Coefficients for Numerical Analysis of Piezoelectric Actuators Using a Three-Dimensional Finite Element Method

  • Joo, Hyun-Woo;Lee, Chang-Hwan;Park, Jong-Seok;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.2
    • /
    • pp.67-73
    • /
    • 2003
  • In this paper, the impedance of a piezoelectric transducer is calculated using the three-dimensional finite element method. The validity of numerical routine is confirmed experimentally. Using this numerical routine, the effects of material coefficients on piezoelectric actuators characteristics are analyzed. The material constants, which make significant effects, are selected and the relations between material constants are studied. Using these processes, three variables of material constants for a piezoelectric transducer are selected and the design sensitivity method is adopted as an inversion scheme. The validity of the inversion scheme for a piezoelectric transducer is confirmed by applying the proposed method to the sample piezoelectric transducer.

Optimal design of a piezoelectric passive damper for vibrating plates

  • Yun, Chul-Yong;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.42-49
    • /
    • 2006
  • In this paper, an efficient piezoelectric passive damper is newly devised to suppress the multi-mode vibration of plates. To construct the passive damper, the piezoelectric materials are utilized as energy transformer, which can transform the mechanical energy to electrical energy. To dissipate the electrical energy transformed from mechanical energy, multiple resonant shunted piezoelectric circuits are applied. The dynamic governing equations of a coupled electro-mechanical piezoelectric with multiple piezoelectric patches and multiple resonant shunted circuits is derived and solved for the one edge clamped plate. The equations of motion of the piezoelectrics and shunted circuits as well as the plate are discretized by finite element method to estimate more exactly the effectiveness of the piezoelectric passive damper. The method to find the optimal location of a piezoelectric is presented to maximize effectiveness for desired modes. The electro-mechanical coupling term becomes important parameter to select the optimal location.

Electric properties of PZN-PNN-PT-PZ piezoelectric ceramics prepared by molten salt method (용융염 합성법으로 제조한 PZN-PNN-PT-PZ계 압전세라믹스의 전기적 특성)

  • 어수해;이기태
    • Electrical & Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.351-356
    • /
    • 1996
  • The quartemary system ceramics 0.5[xPb(Zn$_{1}$3/Nb$_{2}$3/)O$_{3}$-(1-x)Pb(Ni$_{1}$3/Nb$_{2}$3/)O$_{3}$]-0.5[yPbTiO$_{3}$-(1-y) PbZrO$_{3}$ for piezoelectric actuators were prepared bv the were added to the raw materials up to 5 mole. Sintering temperature was varied form 1000.deg. C to 1200.deg. C. Sintering characteristrics, dielectric and piezoelectric properties were then investigated. Piezoelectric properties of sample prepared by the molten salt method were improved compared to those prepared by the conventional method. Addition of PZN shifted morphotropic phase boundary to more Zr-rich composition and decreased the piezoelectric properties.

  • PDF

Finite element analysis of piezoelectric structures incorporating shunt damping (압전 션트 감쇠된 구조물의 유한요소해석)

  • 김재환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.470-477
    • /
    • 2002
  • Possibility of passive piezoelectric damping based on a new shunting parameter estimation method is studied using finite element analysis. The adopted tuning method is based electrical impedance that is found at piezoelectric device and the optimal criterion for maximizing dissipated energy at the shunt circuit. Full three dimensional finite element model is used for piezoelectric devices with cantilever plate structure and shunt electronic circuit is taken into account in the model. Electrical impedance is calculated at the piezoelectric device, which represents the structural behavior in terms of electrical field, and equivalent electrical circuit parameters for the first mode are extracted using PRAP (Piezoelectric Resonance Analysis Program). After the shunt circuit is connected to the equivalent circuit for the first mode, the shunt parameters are optimally decided based on the maximizing dissipated energy criterion. Since this tuning method is based on electrical impedance calculated at piezoelectric device, multi-mode passive piezoelectric damping can be implemented for arbitrary shaped structures.

  • PDF

Characterization of Nanoscale Electroactive Polymers via Piezoelectric Force Microscopy

  • Lee, Su-Bong;Ji, Seungmuk;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.232.2-232.2
    • /
    • 2015
  • Piezoelectric force microscopy (PFM) is a powerful method to characterize inversed piezoelectric effects directly using conductive atomic force microscopy (AFM) tips. Piezoelectric domains respond to an applied AC voltage with a characteristic strain via a contact between the tip and the surface of piezoelectric material. Electroactive piezoelectric polymers are widely investigated due to their advantages such as flexibility, light weight, and microactuation enabling various device features. Although piezoelectric polymers are promising materials for wide applications, they have the primary issue that the piezoelectric coefficient is much lower than that of piezoelectric ceramics. Researchers are studying widely to enhance the piezoelectric coefficient of the materials including nanoscale fabrication and copolymerization with some materials. In this report, nanoscale electroactive polymers are prepared by the electrospinning method that provides advantages of direct poling, scalability, and easy control. The main parameters of the electrospinning process such as distance, bias voltage, viscosity of the solution, and elasticity affects the piezoelectric coefficient and the nanoscale structures which are related to the phase of piezoelectric polymers. The characterization of such electroactive polymers are conducted using piezoelectric force microscopy (PFM). Their morphologies are characterized by field emission-scanning electron microscope (FE-SEM) and the crystallinity of the polymer is determined by X-ray diffractometer.

  • PDF

Application of Piezoelectric Smart Structures for Statistical Energy Analysis (압전 지능 구조물을 이용한 통계적 에너지 해석 기법)

  • 김재환;김정하;김재도
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.257-264
    • /
    • 2001
  • In this research, piezoelectric smart structures are applied for SEA(Statistical Energy Analysis), which is well known approach for high frequency analysis. A new input power measurement based on piezoelectric electrical power measurement is proposed and compared with the conventional method in SEA. As an example, a simple aluminum beam on which piezoelectric actuator is attached is considered. By measuring the electrical impedance and electrical current of the piezoelectric actuator, the electrical power given on the actuator is found and this is In turn converted into the mechanical energy. From the measured value of the stored energy of the beam, the Internal loss factor is calculated and this value shows a good agreement with that given by the conventional method as well as the theoretical value. To compare the coupling loss factor, L-shape beam system which consists of a aluminum beam subsystem and a steel beam subsystem coupled by three pin is taken as second example. The input power and stored energy of each subsystem are found by the proposed approach. The coupling loss factor found by the electrical input power obtained from the piezoelectric actuator exhibits similar trend to the value found by the conventional method as well as the theoretical value. In conclusion, the use of SEA for high frequency application of piezoelectric smart structures is Possible. Especially, the input power that is essential for SEA can be found accurately by measuring the electrical input power of the piezoelectric actuator.

  • PDF

Active vibration robust control for FGM beams with piezoelectric layers

  • Xu, Yalan;Li, Zhousu;Guo, Kongming
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.33-43
    • /
    • 2018
  • The dynamic output-feedback robust control method based on linear matrix inequality (LMI) method is presented for suppressing vibration response of a functionally graded material (FGM) beam with piezoelectric actuator/sensor layers in this paper. Based on the reduced model obtained by using direct mode truncation, the linear fractional state space representation of a piezoelectric FGM beam with material properties varying through the thickness is developed by considering both the inherent uncertainties in constitution material properties as well as material distribution and the model error due to mode truncation. The dynamic output-feedback robust H-infinity control law is implemented to suppress the vibration response of the piezoelectric FGM beam and the LMI method is utilized to convert control problem into convex optimization problem for efficient computation. In numerical studies, the flexural vibration control of a cantilever piezoelectric FGM beam is considered to investigate the accuracy and efficiency of the proposed control method. Compared with the efficient linear quadratic regulator (LQR) widely employed in literatures, the proposed robust control method requires less control voltage applied to the piezoelectric actuator in the case of same control performance for the controlled closed-loop system.

An Open-Loop Method for Point-to-Point Positioning of a Piezoelectric Actuator

  • Henmi, Nobuhiko;Tanaka, Michihiko
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.9-13
    • /
    • 2007
  • We describe how to control a piezoelectric actuator using the open-loop method for point-to-point positioning. Since piezoelectric actuators have nonlinear characteristics due to hysteresis and creep between the input voltage and the resulting displacement, a special method is required to eliminate this nonlinearity for an open-loop drive. We have introduced open-loop driving methods for piezoelectric actuators in the past, which required a large input voltage and an initializing motion sequence to reset the state of the actuator before each movement. In this paper, we propose a new driving method that uses the initializing state. This method also utilizes the overshoot from both the upward and downward stepwise drives. Applying this method., we obtained precise point-to-point positioning without the influence of hysteresis and creep.

A comprehensive analysis on the discretization method of the equation of motion in piezoelectrically actuated microbeams

  • Zamanian, M.;Rezaei, H.;Hadilu, M.;Hosseini, S.A.A.
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.891-918
    • /
    • 2015
  • In many of microdevices a part of a microbeam is covered by a piezoelectric layer. Depend on the application a DC or AC voltage is applied between upper and lower side of the piezoelectric layer. A common method in many of previous works for evaluating the response of these structures is discretizing by Galerkin method. In these works often single mode shape of a uniform microbeam i.e. the microbeam without piezoelectric layer has been used as comparison function, and so the convergence of the solution has not been verified. In this paper the Galerkin method is used for discretization, and a comprehensive analysis on the convergence of solution of equation that is discretized using this comparison function is studied for both clamped-clamped and clamped-free microbeams. The static and dynamic solution resulted from Galerkin method is compared to the modal expansion solution. In addition the static solution is compared to an exact solution. It is denoted that the required numbers of uniform microbeam mode shapes for convergence of static solution due to DC voltage depends on the position and thickness of deposited piezoelectric layer. It is shown that when the clamped-clamped microbeam is coated symmetrically by piezoelectric layer, then the convergence for static solution may be obtained using only first mode. This result is valid for clamped-free case when it is covered by piezoelectric layer from left clamped side to the right. It is shown that when voltage is AC then the number of required uniform microbeam shape mode for convergence is much more than the number of required mode in modal expansion due to the dynamic effect of piezoelectric layer. This difference increases by increasing the piezoelectric thickness, the closeness of the excitation frequency to natural frequency and decreasing the damping coefficient. This condition is often indefeasible in microresonator system. It is concluded that discreitizing the equation of motion using one mode shape of uniform microbeam as comparison function in many of previous works causes considerable errors.