• Title/Summary/Keyword: Piezoelectric Actuation

Search Result 106, Processing Time 0.02 seconds

The State of the Art and Application of Actuator in Aerospace (항공우주용 구동장치 개발 동향)

  • Yoon, Gi-Jun;Park, Ho-Youl;Jang, Ki-Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.89-102
    • /
    • 2010
  • In this paper, a study on the future-oriented actuator introduces the future technology and future direction in aerospace and several industry fields. In particular, the mechanical linkage or hydraulic and pneumatic actuators which have the higher output-to-weight ratio have been used a lot in the past as the aircraft's flight control device. Most recently, Fly-By-Wire system has been used in aircraft and the flight control system has been changed in more electric and all electric systems. Electrohydraulic actuators and electric actuators have been developed continually, because they have better efficiency, safety and lower cost for the flight control system of aircraft. Also, to improve the weight condition, accuracy and response of actuator, new field actuators using new materials have been developed. In this paper we clearly proposed the actuator design and detailed technology development trend for next generation actuation system in aerospace and new field.

Dielectric and Piezoelectric Properties in Multilayer Ceramic Actuator (적층형 세라믹 액츄에이터의 유전 및 압전특성)

  • Choi, Hyeong-Bong;Jeong, Soon-Jong;Ha, Mun-Su;Koh, Jung-Hyuk;Lee, Dae-Su;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.615-618
    • /
    • 2004
  • The piezoelectricity and polarization of multilayer ceramic actuators, being designed to stack ceramic layer and electrode layer alternately, were investigated under a consideration of geometry, the thickness ratio of the ceramic layer to electrode layer The actuators were fabricated by tape-casting of $0.42PbTiO_3-0.38PbZrO_3-0.2Pb(Mn_{1/3}Nb_{2/3})O_3$ followed by laminating, burn-out and co-firing process. The actuators of $5\times5mm^2$ in area were formed in a way that $60{\sim}200{\mu}m$ thick ceramics were stacked 10 times alternately with $5{\mu}m$ thick electrode. Increase in polarization and electric field-displacement with increasing thickness ratio of the ceramic/electrode layer and thickness/cross section ratio were attributed to the change of $non-180^{\circ}/180^{\circ}$ domain ratio which was affected by the interlayer internal stress and Poisson ratio of ceramic layer. The piezoelectricity and actuation behaviors were found to be dependent upon the volume ratio (or thickness ratio) of ceramic layer relative to ceramic layer. Concerning with the existence of internal stress, the field-induced polarization and deformation were described in the multilayer actuator.

  • PDF

Wirelessly Driven Cellulose Electro-Active Paper Actuator: Application Research (원격구동 셀룰로오스 종이 작동기의 응용연구)

  • Kim, Jae-Hwan;Yang, Sang-Yeol;Jang, Sang-Dong;Ko, Hyun-U;Mun, Sung-Cheol;Kim, Dong-Gu;Kang, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.539-543
    • /
    • 2012
  • Cellulose Electro-Active Paper (EAPap) is attractive as a biomimetic actuator because of its merits: it is lightweight, operates in dry conditions, has a large displacement output, has a low actuation voltage, and has low power consumption. Cellulose is regenerated so as to align its microfibrils, which results in a piezoelectric paper. When chemically bonded and mixed with carbon nanotubes, titanium oxide, zinc oxide, tin oxides, the cellulose EAPap can be used as a hybrid nanocomposite that has versatile properties and that can meet the requirements of many application devices. This paper presents trends in recent research on the cellulose EAPap, mainly on material preparation and its use in devices, including biosensors, chemical sensors, flexible transistors, and actuators. This paper also explains wirelessly driving technology for the cellulose EAPap, which is attractive for use in biomimetic robotics and micro-aerial vehicles.

Piezo-electrically Actuated Micro Corner Cube Retroreflector (CCR) for Free-space Optical Communication Applications

  • Lee, Duk-Hyun;Park, Jae-Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.337-341
    • /
    • 2010
  • In this paper, an extremely low voltage operated micro corner cube retroreflector (CCR) was fabricated for free-space optical communication applications by using bulk silicon micromachining technologies. The CCR was comprised of an orthogonal vertical mirror and a horizontal actuated mirror. For low voltage operation, the horizontal actuated mirror was designed with two PZT cantilever actuators, torsional bars, hinges, and a mirror plate with a size of $400{\mu}m{\times}400{\mu}m$. In particular, the torsional bars and hinges were carefully simulated and designed to secure the flatness of the mirror plate by using a finite element method (FEM) simulator. The measured tilting angle was approximately $2^{\circ}$ at the applied voltage of 5 V. An orthogonal vertical mirror with an extremely smooth surface texture was fabricated using KOH wet etching and a double-SOI (silicon-on-insulator) wafer with a (110) silicon wafer. The fabricated orthogonal vertical mirror was comprised of four pairs of two mutually orthogonal flat mirrors with $400{\mu}m4 (length) $\times400{\mu}m$ (height) $\times30{\mu}m$ (thickness). The cross angles and surface roughness of the orthogonal vertical mirror were orthogonal, almost $90^{\circ}$ and 3.523 nm rms, respectively. The proposed CCR was completed by combining the orthogonal vertical and horizontal actuated mirrors. Data transmission and modulation at a frequency of 10 Hz was successfully demonstrated using the fabricated CCR at a distance of approximately 50 cm.

Application of artificial intelligence to improve the efficiency and stability of prosthetic hands via nanoparticle reinforcement

  • Jialing Li;Gongxing Yan;Zhongjian Tang;Saifeldin M. Siddeeg;Tamim Alkhalifah
    • Advances in nano research
    • /
    • v.17 no.4
    • /
    • pp.385-399
    • /
    • 2024
  • NEMS (Nano-Electro-Mechanical Systems) devices play a significant role in the advancement of prosthetic hands due to their unique properties at the nanoscale. Their integration enhances the functionality, sensitivity, and performance of prosthetic limbs. Understanding the electro-thermal buckling behavior of such structures is crucial since they may be subjected to extreme heat. So, in this paper, the two-dimensional hyperbolic differential quadrature method (2D-HDQM) integrated with a four-variable refined quasi-3D tangential shear deformation theory (RQ-3DTSDT) in view of the trace of thickness stretching is extended to study electro-thermal buckling response of three-directional poroelastic FG (3D-PFG) circular sector nanoplate patched with piezoelectric layer. Aimed at discovering the real governing equations, coupled equations with the aid of compatibility conditions are employed. Regarding modeling the size-impacts, nonlocal refined logarithmic strain gradient theory (NRLSGT) with two variables called nonlocal and length scale factors is examined. Numerical experimentation and comparison are used to indicate the precision and proficiency related to the created procedure. After obtaining the outputs of the mathematics, an appropriate dataset is used for testing, training and validating of the artificial intelligence. In the results section will be discussed the trace associated with multiple geometrical and physical factors on the electro-thermal buckling performance of the current nanostructure. These findings are essential for the design and optimization of NEMS applications in various fields, including sensing, actuation, and electronics, where thermal stability is paramount. The study's insights contribute to the development of more reliable and efficient NEMS devices, ensuring their robust performance under varying thermal conditions.

Nondestructive Diagnosis of NPP Piping System Using Ultrasonic Wave Imaging Technique Based on a Pulsed Laser Scanning System (펄스 레이저 스캐닝 기반 초음파 영상화 기술을 활용한 원전 배관 비파괴 진단)

  • Kim, Hyun-Uk;Lee, Chang-Gil;Park, Seung-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.166-173
    • /
    • 2014
  • A noncontact nondestructive testing (NDT) method is proposed to detect the damage of pipeline structures and to identify the location of the damage. To achieve this goal, a scanning laser source actuation technique is utilized to generate a guided wave and scans a specific area to find damage location more precisely. The ND: YAG pulsed laser is used to generate Lamb wave and a piezoelectric sensor is installed to measure the structural responses. The measured responses are analyzed using three dimensional Fourier transformation (3DFT). The damage-sensitive features are extracted by wavenumber filtering based on the 3D FT. Then, flaw imaging techniques of a pipeline structures is conducted using the damage-sensitive features. Finally, the pipes with notches are investigated to verify the effectiveness and the robustness of the proposed NDT approach.