• Title/Summary/Keyword: Piezocone Penetration Test CPTu

Search Result 11, Processing Time 0.025 seconds

Undrained Shear Strength of Marine Clays of Shihwa Region Obtained from CPTu (CPTu로부터 구한 시화지구 해성점토의 비배수 전단강도)

  • Jang, In-Sung;Kim, Bum-Sang
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.353-360
    • /
    • 2003
  • Estimation of undrained shear strength $(S_u)$ of clayey soils from piezocone penetration test (CPTu), which has widely been known as one of very promising in situ test methods, requires piezocone factors. Empirical correlations are generally utilized to derive piezocone factors, but previous studies on the empirical piezocone factors are site-specific and in some cases need engineering characteristics, which should be obtained from additional laboratory tests. In this study, empirical cone factors were evaluated by comparing 6 CPTu results at Shihwa region in Korea with reference $S_u$ values obtained from field vane test (FVT). From previous CPTu results of other regions in Korea as well as the results herein, the correlations between piezocone factor, $N_{kT}$ and CPTu results were investigated and three simplified evaluation methods of $S_u$ using only CPTu results were presented. The $S_u$ values estimated by $(q_T-{\sigma}_v)/{\sigma}'_v$ method shows better matches with those obtained from laboratory tests for marine clays at Shihwa region.

Piezocone Factors of Korean Clayey Soils (국내 점성토 지반의 피에조콘 계수)

  • 장인성;이선재;정충기;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.15-24
    • /
    • 2001
  • In order to evaluate undrained shear strength of clayey soils using Piezocone Penetration Test (CPTu), piezoncone factor is utilized. Commonly, piezoncone factors determined by empirical basis were preferred, which were established by correlation between measurements of piezocone test and undrained strengths obtained from other shearing tests. However, previous studies on the empirical piezocone factors were site-specific and there have been no systematic investigations on the effect of both engineering characteristics of clayey soils and soil non-homogeneity on the piezocone factor. Accordingly, the direct application of the previous results to Korean clayey soils without verification may be inappropriate. In this study, empirical piezocone factors are evaluated by comparing 46 CPTu results of 10 test sites with undrained shear strength obtained from Field Vane Test (FVT) and laboratory triaxial tests. Their reliabilities are investigated by the comparison with the previous piezocone factors and the deviation of data distribution from the mean values. And the effects of referencing test methods and typical engineering characteristics of clayey soils such as overconsolidation ratio (OCR) and plastic Index (I$_{p}$) are examined. Because piezocone factors obtained for various soil conditions are widely distributed, it is not appropriate to use the mean value as a representative. Instead, it is recommended to apply the piezocone factors with OCR, which is found to be a major factor in deriving piezocone factor. The necessitated piezocone factors are presented.d.

  • PDF

A Pilot Study of Inhole Type CPTu from Model Tests (실내모형실험을 통한 인홀형 탄성파콘 시험의 적용성 분석)

  • Jang, In-Sung;Jung, Min-Jae;Kwon, O-Soon;Mok, Young-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2C
    • /
    • pp.95-103
    • /
    • 2008
  • Seismic piezocone penetration tests (SCPTu) can be used to obtain dynamic properties of soils as well as cone resistance and penetration pore pressure. However, the SCPTu system can be hardly utilized in marine soils because it is difficult to install the source apparatus which generates the shear wave in offshore site. The authors developed an inhole type piezocone penetration test (CPTu) equipment which both source and receiver composed of bender elements were installed inside the rod located behind the cone. Therefore, it can be applicable to even an offshore site without any additional source apparatus. The objective of this paper is to investigate the practical application of inhole type CPTu by performing laboratory model tests using kaolinite as soft clay. The shear wave velocities of kaolinite soil were measured with time, and the effects of soil disturbance due to the installation of source and receiver were also examined for various distance between source and receiver.

Estimation of Geotechnical Characteristics at of the Marine Clay at Inchon International Airport Marine Clay Using Piezocone and Dilatometer Tests (CPTu와 DMT를 이용한 인천국제공항 해성점토의 공학적 특성연구)

  • 김종국;김영웅;최인걸;박영목
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.2
    • /
    • pp.41-49
    • /
    • 2001
  • 본 연구에서는 2단계 확정예정부지의 일부 원지반에서 수행된 CPTu(piezocone penetration test)와 DMT(dilatometer) 및 실내시험 결과를 바탕으로 흙의 분류, 비배수전단강도 그리고 압밀계수 등의 공학적 특성을 살펴보았다. CPTu와 DMT를 이용한 흙의 분류 결과, 점토층 사이에 얇게 산재한 샌드심(sand seam)층을 보다 정확하게 판정할 수 있었다. 삼축압축시험의 비배수 강도($S_{u}$ )를 기준으로 산정한 콘계수는 CPTu의 경우 $N_{k}$ =18.2를, DMT의 경우 Roque(1988)의 제안식을 이용한 $N_{c}$=6.35로 추정한 비배수전단강도가 비교적 일치하는 것으로 나타났다. 또한 CPTu와 DMT를 이용한 수평압밀계수는 비교적 근사한 것을 알 수 있었다. 그러나, 해성점토사이에 실트, 샌드심이 존재하는 실트질 지반에서의 수평압밀계수가 연직압밀계수보다 상당히 크며, 압밀계수비($C_{h(Oedo, CPTu, DMT)}$ /$C_{v Oedo}$ )는 4.3~10.2로 큰 차이를 보이고 있다.

  • PDF

Indirect evaluation of the shear wave velocity of clays via piezocone penetration tests

  • Vinod K., Singh;Sung-Gyo, Chung;Hyeog-Jun, Kweon
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.623-635
    • /
    • 2022
  • This paper presents the re-evaluation of existing piezocone penetration test (CPTu)-based shear wave velocity (Vs) equations through their application into well-documented data obtained at nine sites in six countries. The re-evaluation indicates that the existing equations are appropriate to use for any specific soil, but not for various types of clays. Existing equations were adjusted to suit all nine clays and show that the correlations between the measured and predicted Vs values tend to improve with an increasing number of parameters in the equations. An adjusted equation, which comprises a CPTu parameter and two soil properties (i.e., effective overburden stress and void ratio) with the best correlation, can be converted into a CPTu-based equation that has two CPTu parameters and depth by considering the effect of soil cementation. Then, the developed equation was verified by application to each of the nine soils and nine other worldwide clays, in which the predicted Vs values are comparable with the measured and the stochastically simulated values. Accordingly, the newly developed CPTu-based equation, which is a time-saving and economical method and can estimate Vs indirectly for any type of naturally deposited clay, is recommended for practical applications.

Estimation of Soft Ground Characteristics using the Piezo-Cone Penetration Tests(CPTu) on Honam High-Speed Railway Planning Line (호남고속철도 계획노선에서의 피에조콘 관입시험(CPTu)에 의한 연약지반 특성 평가)

  • Lee, Il-Wha;Kwon, Oh-Jung;Kwen, Jin-Su;Min, Kyoung-Nam
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1796-1801
    • /
    • 2007
  • Piezocone penetration testing(CPTu) results such as cone resistance$(q_c)$, sleeve friction$(f_s)$, and pore pressure(u), have been carried out at 5 sites in Honam high-speed railway areas of Korea, in order to continuously estimate the characteristics of soil layers and the undrained shear strength$(S_u)$ in a soft ground. For the applications of the conventional CPTu results to undrained shear strength, the cone factors$(N_{kt})$ were deduced based on Field vane tests, and Monte-Carlo Simulation(MCS). Moreover the correlations of the undrained shear strength of CPTu by soil depths were compared and revised with the results of triaxial compression(UU test), field vane and Dilatometer tests(DMT). The depths of soft foundation at 5 sites in Honam high-speed railway areas were calculated based on the results of the various field tests in addition CPTu. The applicability of CPTu for a soft foundation criterion referred to the criteria of high-speed railway and related agencies in Korea was evaluated.

  • PDF

LPI-based Assessment of Liquefaction Potential on the West Coastal Region of Korea (액상화 가능 지수를 이용한 국내 서해안 지역의 액상화 평가)

  • Seo, Min-Woo;Sun, Chang-Guk;Oh, Myoung-Hak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.1-13
    • /
    • 2009
  • Liquefaction is a significant threat to structures on loose saturated sandy soil deposits in the event of an earthquake, and can often cause catastrophic damage, economic loss, and loss of life. Nevertheless, the Korean peninsula has for a long time been recognized as a safe region with respect to the hazard of liquefaction, as the peninsula is located in a moderate seismicity region, and there have been no reports of liquefaction, with the exception of references in some historical documents. However, some earthquakes that have recently occurred in different parts of the world have led to liquefaction in non-plastic silty soils, a soil type that can be found in many of the western coastal areas of Korea. In this study, we first present procedures for evaluating the liquefaction potential, and calculate the liquefaction potential index (LPI) distribution at two western coastal sites using both piezocone penetration test (CPTu) data and standard penetration test (SPT) data. The LPI is computed by integrating liquefaction potential over a depth of 20m, and provides an estimate of liquefaction-related surface damage. In addition, we compared the LPI values obtained from CPTu and SPT, respectively. Our research found that the CRR values from CPTu were lower than those from the SPT, particularly in the range between 40 and 120 for the corrected tip resistance, (qc1N)CS, from the CPTu, or in the range of CRR less than 0.23, resulting in relatively high LPI values. Moreover, it was observed that the differences in the CRR between the two methods were relatively higher for soils with high fine contents.

Deduction of Correlations between Shear Wave Velocity and Geotechnical In-situ Penetration Test Data (전단파속도와 지반공학적 현장 관입시험 자료의 상관관계 도출)

  • Sun, Chang-Guk;Kim, Hong-Jong;Chung, Choong-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.1-10
    • /
    • 2008
  • Shear wave velocity($V_S$), which can be obtained using various seismic tests, has been emphasized as representative geotechnical dynamic characteristic mainly for seismic design and seismic performance evaluation in the engineering field. For the application of conventional geotechnical site investigation techniques to geotechnical earthquake engineering, standard penetration tests(SPT) and piezocone penetration tests(CPTu) together with a variety of borehole seismic tests were performed at many sites in Korea. Through statistical modeling of the in-situ testing data, in this study, the correlations between $V_S$ and geotechnical in-situ penetrating data such as blow counts(N value) from SPT and piezocone penetrating data such as tip resistance ($q_t$), sleevefriction($f_s$), and pore pressure ratio($B_q$) were deduced and were suggested as an empirical method to determine $V_S$. Despite the incompatible strain levels of the conventional geotechnical penetration tests and the borehole seismic tests, it is shown that the suggested correlations in this study are applicable to the preliminary estimation of $V_S$ for Korean soil layers.

Estimation of Undrained Shear Strength for Clays Using Effective Cone Factor (유효콘계수를 이용한 포화점토의 비배수전단강도 평가)

  • Kim, Chang-Dong;Kim, Soo-Il;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.133-141
    • /
    • 2008
  • In this study, a new method for estimating the undrained shear strength $s_u$ of saturated clays using piezocone penetration test (CPTu) result is proposed. This is to develop more effective CPTu-based $s_u$ estimation method at lower cost with less uncertainty. For this purpose, a marine clay deposit is selected and tested through extensive experimental testing program including both in-situ and fundamental laboratory tests. The proposed method is based on a correlation between the undrained shear strength $s_u$ and the cone resistance $q_t$, without introduction of the total overburden stress into the $s_u-q_t$ correlation. As a result, no additional testing procedure for collecting undisturbed soils samples is required, which can reduce overall testing cost. To verify the proposed method, 4 test sites, which consist of a variety of soil conditions, are selected and used for comparison between measured and predicted undrained shear strength. From comparison, it is seen that predicted values of $s_u$ using the proposed method match well those from measured results.

Assessment on Consolidation Material Function and Initial Stress for Soft Ground by Hydraulic Fill the at Southern Coast of Korea (남해안 준설매립 연약지반에 대한 압밀 물질함수 및 초기응력 산정)

  • Jeon, Je Sung;Koo, Ja Kap
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.136-145
    • /
    • 2011
  • For a massive project related to building national industrial complexes on a soft ground applied to PVD after dredging and hydraulic fill, laboratory tests were carried out using undisturbed sample taken from various depth. Piezocone penetration and dissipation tests were carried out to assess horizontal coefficient of consolidation and initial stress in field. The ground consists of upper dredged fill and lower original clay layer having both similar marine clays. It should be, however, considered as multi-layered soft ground having different initial void ratio, initial water content, initial effective stress, and permeability and compressibility with directions. To assess initial stress of those soft layers in which have different stress history related to consolidation, CPTu test results, especially excess pore water pressure, were analyzed. It allows to find out distribution of excess pore water pressure and initial stress inner original clay layer.