• Title/Summary/Keyword: Piezo actuators

Search Result 69, Processing Time 0.033 seconds

Removal of Flooding in a PEM Fuel Cell at Cathode by Flexural Wave (Flexural wave를 이용한 고분자 전해질 연료전지 공기극 내에서의 플러딩 제거)

  • Kim, Kyoung-Rock;Han, Seong-Ho;Ahn, Deuk-Kuen;Choi, Young-Don
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • Water management is an important issue of PEM fuel cell operation. Water is the product of the electrochemical reactions inside fuel cell. If liquid water accumulation becomes excessive in a fuel cell, water columns will clog the gas flow channel. This condition is referred to as flooding. A number of researchers have examined the water removal methods in order to improve the performance. In this paper, a new water removal method that investigates the use of vibro-acoutic methods is presented. Piezo-actuators which are devices to generate the flexural wave are attached at the end of a cathode bipolar plate. Flexural wave is used to impart energy to resting droplets and thus cause movement of the droplets in the direction of the traveling wave.

A Micro-positioning Parallel Mechanism Platform with 100-degree Tilting Capability (높은 회전성능($100^{\circ}$)을 가지는 초정밀 위치결정용 마이크로 병렬기구 플랫폼의 개발)

  • Yoon Yong-Ha;Kang Deuk-Soo;Seo Tae-Won;Kim Hong-Seok;Sung Tai-Jong;Kim Jong-Won
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.131-132
    • /
    • 2006
  • This paper presents a micro-positioning platform based on the unique parallel mechanism recently developed by the authors. The platform has a meso-scale rectangular shape whose size is $20{\times}23m$. The stroke is 5 mm for both the x- and y-axis and 100 degrees for the ${\alpha}$-axis(the rotational axis along the x-axis). The platform is actuated by the three sets of two-stage linear actuators: a linear motor for rough positioning and a piezo actuator for fine positioning. The platform is already assembled. Experimental results of the positioning measurements and control performance are presented.

  • PDF

Development of ultrasonic linear piezoelectric actuator with flexuralvibration mode (굴곡 진동모드를 이용한 초음파 선형 압전 액추에이터 개발)

  • Yoon, Jang-Ho;Choi, Woo-Chun;Kang, Chong-Yun;Kang, Jin-Kyu;Yoon, Seok-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.461-466
    • /
    • 2009
  • This paper represents a piezoelectric ultrasonic linear actuator with flexural vibration mode. The actuator is composed of two piezo ceramics, the elastic body, and the connecting tip. It is driven by the frictional force between the connecting tip and the linear motion guide. Unimorph actuators have flexural vibration. Its middle point is fixed so that suitable to the flexural vibration of $3/2\lambda$. These vibrations contribute to elliptical motion by mixed mode between longitudinal and transverse mode. It was generated when the ultrasonic electrical signals with 90 degree phase difference are applied to two ceramics. A linear movement can be easily obtained using the elliptical motion. The ATILA, FEM simulator has been used to design actuator and verify the kinetic and dynamic analysis. We used the ceramics of $20\times10\times1$ mm size and confirmed the flexural vibration of the $3/2\lambda$ at the 79 kHz through the scanning of 3D-vibrometer. The maximum velocity of actuator was 221 mm/sec and the thrust force of actuator was 2.7 N in 200Vp-p of additional voltage.

Improvement of Micro-hole EDM Efficiency using Vibration Flushing (진동기구를 이용한 미세구멍 방전가공의 효율향상)

  • Son, Seong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.623-628
    • /
    • 2011
  • Micro EDM(Electric Discharge Machining) is one of the most powerful technologies which are capable of fabricating micro-structure without any problems from high cutting force. However, there is a significant defect in the part machining with deep holes or pockets, because debris which are generated by electric discharging may frequently cause a short circuit between an electrode and workpiece material. Vibration flushing can reduce the undesirable phenomena with dynamic flow of EDM fluid in a deep and choked area. In this study, Vibration flushing with solenoid is suggested and the results show that the method can generate a remarkable EDM efficiency with high amplitude at a low frequency in comparison with current vibration flushing methods with high frequency using piezo actuators.

Effect of Piezoactuator Length Variation for Vibration Control of Beams (보의 진동제어를 위한 압전 액추에이터의 길이변화 효과 연구)

  • Lee, Young-Sup
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1185-1191
    • /
    • 2008
  • This paper presents an approach to define an optimal piezoactuator length to actively control structural vibration. The optimal ratio of the piezoactuator length against the beam length when a pair of piezoceramic actuator and accelerometer is used to suppress unwanted vibration with direct velocity feedback(DVFB) control strategy is not clearly defined so far. It is well known that DVFB control can be very useful when a pair of sensor and actuator is collocated on structures with a high gain and excellent stability. It is considered that three different collocated Pairs of piezoelectric actuators (20, 50 and 100 mm long) and accelerometers installed on three identical clamped-clamped beams($30{\times}20{\times}1mm$). The response of each sensor-actuator pair requires strictly positive real(SPR) property to apply a high feedback gain. However the length of the piezoactuator affects the SPR property of the sensor-actuator response. Intensive simulation and experiment show the effect of the actuator length variation is strongly related with the frequency range of the SPR property. Thus an optimal length ratio was suggested to obtain relevant performance with a good stability under the DVFB strategy.

Experimental Analysis of Operating Parameters for Piezoelectric Jetting Dispenser (압전 젯팅 디스펜서의 작동 변수에 대한 실험적 분석)

  • Sohn, Jung Woo;Hong, Seung-Min;Kim, Gi-Woo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.10
    • /
    • pp.685-691
    • /
    • 2015
  • In this work, to identify effective parameter for performance of piezoelectric jetting dispenser, experimental investigation is carried out based on design of experiment. After preparing jetting dispenser using two stack-type piezoelectric actuators, basic working principle of the jetting dispenser is described. Eight operating conditions are chose as main factors and it is assumed that each factor has two levels. To reduce number of experiments for performance evaluation, the experimental sets are designed based on factional factorial design method. Experimental setup is established and the weight of single dot is measured by using precision scale. The main and interaction effects of factors are analyzed using commercial statistical program and optimal operating condition for small amount and small variation of weight of dispensed single dot are determined.

Thermo-electro-elastic nonlinear stability analysis of viscoelastic double-piezo nanoplates under magnetic field

  • Ebrahimi, Farzad;Hosseini, S. Hamed S.;Selvamani, Rajendran
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.565-584
    • /
    • 2020
  • The nonlinear thermo-electro-elastic buckling behavior of viscoelastic nanoplates under magnetic field is investigated based on nonlocal elasticity theory. Employing nonlinear strain-displacement relations, the geometrical nonlinearity is modeled while governing equations are derived through Hamilton's principle and they are solved applying semi-analytical generalized differential quadrature (GDQ) method. Eringen's nonlocal elasticity theory considers the effect of small size, which enables the present model to become effective in the analysis and design of nano-sensors and nano actuators. Based on Kelvin-Voigt model, the influence of the viscoelastic coefficient is also discussed. It is demonstrated that the GDQ method has high precision and computational efficiency in the buckling analysis of viscoelastic nanoplates. The good agreement between the results of this article and those available in literature validated the presented approach. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as electric voltage, small scale effects, elastomeric medium, magnetic field, temperature effects, the viscidity and aspect ratio of the nanoplate on its nonlinear buckling characteristics. It is explicitly shown that the thermo-electro-elastic nonlinear buckling behavior of viscoelastic nanoplates is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of viscoelastic nanoplates as fundamental elements in nanoelectromechanical systems.

Performance Evaluation of a Bidirectional Piezoelectric Hybrid Actuator (양방향 압전-유압 하이브리드 구동장치의 성능 시험)

  • Jin, Xiaolong;Ha, Ngocsan;Goo, Namseo;Bae, Byungwoon;Kim, Taeheun;Ko, Hanseo;Lee, Changseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.213-219
    • /
    • 2015
  • Piezoelectric-based hydraulic actuator is a hybrid device consisting of a hydraulic pump driven by piezoelectric stacks that is coupled to a conventional hydraulic cylinder via a set of fast-acting valves. Nowadays, such hybrid actuators are being researched and developed actively in many developed countries by requirement of high performance and compact flight system. In this research, a piezoelectric hybrid actuator has been designed and tested. To achieve bi-directional capabilities in the actuator, solenoid valves were used to control the direction of output fluid. The experimental testing of the actuator in uni-directional and bi-directional modes was performed to examine performance issues related to the solenoid valves. The results showed that the bi-directional performance was slightly lower than uni-directional performance due to air bubble developed in the valve system. A new design to solve the vacuum problem has been proposed to improve the performance of the hybrid actuator.

Piezo-electrically Actuated Micro Corner Cube Retroreflector (CCR) for Free-space Optical Communication Applications

  • Lee, Duk-Hyun;Park, Jae-Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.337-341
    • /
    • 2010
  • In this paper, an extremely low voltage operated micro corner cube retroreflector (CCR) was fabricated for free-space optical communication applications by using bulk silicon micromachining technologies. The CCR was comprised of an orthogonal vertical mirror and a horizontal actuated mirror. For low voltage operation, the horizontal actuated mirror was designed with two PZT cantilever actuators, torsional bars, hinges, and a mirror plate with a size of $400{\mu}m{\times}400{\mu}m$. In particular, the torsional bars and hinges were carefully simulated and designed to secure the flatness of the mirror plate by using a finite element method (FEM) simulator. The measured tilting angle was approximately $2^{\circ}$ at the applied voltage of 5 V. An orthogonal vertical mirror with an extremely smooth surface texture was fabricated using KOH wet etching and a double-SOI (silicon-on-insulator) wafer with a (110) silicon wafer. The fabricated orthogonal vertical mirror was comprised of four pairs of two mutually orthogonal flat mirrors with $400{\mu}m4 (length) $\times400{\mu}m$ (height) $\times30{\mu}m$ (thickness). The cross angles and surface roughness of the orthogonal vertical mirror were orthogonal, almost $90^{\circ}$ and 3.523 nm rms, respectively. The proposed CCR was completed by combining the orthogonal vertical and horizontal actuated mirrors. Data transmission and modulation at a frequency of 10 Hz was successfully demonstrated using the fabricated CCR at a distance of approximately 50 cm.