• Title/Summary/Keyword: Pier Foundation

Search Result 96, Processing Time 0.026 seconds

Study on lateral behavior of digging well foundation with consideration of soil-foundation interaction

  • Wang, Yi;Chen, Xingchong;Zhang, Xiyin;Ding, Mingbo;Lu, Jinhua;Ma, Huajun
    • Geomechanics and Engineering
    • /
    • v.24 no.1
    • /
    • pp.15-28
    • /
    • 2021
  • Digging well foundation has been widely used in railway bridges due to its good economy and reliability. In other instances, bridges with digging well foundation still have damage risks during earthquakes. However, there is still a lack of knowledge of lateral behavior of digging well foundation considering the soil-foundation interaction. In this study, scaled models of bridge pier-digging well foundation system are constructed for quasi-static test to investigate their lateral behaviors. The failure mechanism and responses of the soil-foundation-pier interaction system are analyzed. The testing results indicate that the digging foundations tend to rotate as a rigid body under cyclic lateral load. Moreover, the depth-width ratio of digging well foundation has a significant influence on the failure mode of the interaction system, especially on the distribution of foundation displacement and the failure of pier. The energy dissipation capacity of the interaction system is discussed by using index of the equivalent viscous damping ratio. The damping varies with the depth-width ratio changing. The equivalent stiffness of soil-digging well foundation-pier interaction system decreases with the increase of loading displacement in a nonlinear manner. The absolute values of the interaction system stiffness are significantly influenced by the depth-width ratio of the foundation.

Behavior of Single Pole Foundation using Experimental Study (실증시험을 통한 강관주기초의 거동특성)

  • Kim, Dae-Hong;Oh, Gi-Dae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.598-604
    • /
    • 2010
  • The drilled pier foundation is widely used to support transmission line structures due to its simplicity of construction. When this foundation type is used in conjunction with a single shaft or H-frame structure, it is subjected to a high overturning moment, combined with modest vertical and shear loads. Since the length and diameter of drilled piers are often governed by a maximum permissible deflection, many drilled piers being installed today are very conservatively designed. In this study, Nine prototype field-tests (1/8 scale) have been conducted in order to determine the vertical and lateral resistance of drilled pier foundation for single pole structures. These test results reveal the test piers behaved essentially as rigid bodies in soil (6D) and the center of rotation of the pier were typically 0.6~0.4 of the pier depth below ground surface. Test results also show the relationship between the applied load and the deflection at the top of the pier is highly nonlinear.

  • PDF

Experimental Study on the Laterally Loaded Behavior of Single Pole Foundation (강관주 철탑기초의 수평거동에 관한 실험적 연구)

  • Kim, Dae-Hong;Kim, Kyoung-Yul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1087-1094
    • /
    • 2008
  • The drilled pier foundation is widely used to support transmission line structures due to its simplicity of construction. When this foundation type is used in conjunction with a single shaft or H-frame structure, it is subjected to a high overturning moment, combined with modest vertical and shear loads. Since the length and diameter of drilled piers are often governed by a maximum permissible deflection, many drilled piers being installed today are very conservatively designed. In this study, Five prototype field-tests (1/8 scale) have been conducted in order to determine the lateral resistance of drilled pier foundation for single pole structures. These test results reveal the test piers behaved essentially as rigid bodies in soil (6D) and the center of rotation of the pier were typically 0.6~0.4 of the pier depth below ground surface. Test results also show the relationship between the applied load and the deflection at the top of the pier is highly nonlinear.

  • PDF

Seismic response of bridge pier supported on rocking shallow foundation

  • Deviprasad, B.S.;Dodagoudar, G.R.
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.73-84
    • /
    • 2020
  • In the seismic design of bridges, formation of plastic hinges plays an important role in the dissipation of seismic energy. In the case of conventional fixed-base bridges, the plastic hinges are allowed to form in the superstructure alone. During seismic event, such bridges may be safe from collapse but the superstructure undergoes significant plastic deformations. As an alternative design approach, the plastic hinges are guided to form in the soil thereby utilizing the inevitable yielding of the soil. Rocking foundations work on this concept. The formation of plastic hinges in the soil reduces the load and displacement demands on the superstructure. This study aims at evaluating the seismic response of bridge pier supported on rocking shallow foundation. For this purpose, a BNWF model is implemented in OpenSees platform. The capability of the BNWF model to capture the SSI effects, nonlinear behavior and dynamic loading response are validated using the centrifuge and shake table test results. A comparative study is performed between the seismic response of the bridge pier supported on the rocking shallow foundation and conventional fixed-base foundation. Results of the study have established the beneficial effects of using the rocking shallow foundation for the seismic response analysis of the bridge piers.

Integrity Assessment of Spread Footing Pier for Scour Using Natural Frequency (고유진동수를 이용한 확대기초 교각의 세굴 건전성 평가)

  • Park, Byung-Cheol;Oh, Keum-Ho;Park, Seung-Bum
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.2 s.17
    • /
    • pp.29-35
    • /
    • 2005
  • In Korea more than ninety bridges are collapsed every year by flood, which causes the scour of pier foundation. Researches on the quantitative assessment method to assess the integrity of bridge against scour have not been organized systematically in the bridge design practice and maintenance area. In this study, dynamic characteristics assessment experiments are carried out as an emergency inspection method to assess the integrity of the pier foundation for scour after a flood. According to the dynamic characteristics assessment experiment, which simulates foundation scour of the spread footing pier, foundation scour can be evaluated by the first mode natural frequency of the pier.

Behavior of the Foundation of Concrete Filled Steel Tubular Pier (CFT 교각 기초부의 거동특성)

  • Lee, Ha-Lim;Kim, Hee-Ju;Hwang, Won-Sup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.491-498
    • /
    • 2011
  • In this paper, extensive structural behavior and effects of design parameters of steel column-base plate connections under axial and lateral loads were investigated to improve structural details of CFT(Concrete Filled Steel Tube) pier foundation using commercial FE analysis program, ABAQUS. For this study, design criteria of pier foundation was analyzed and numerical study based on the experiment of previous study was conducted to verify analysis methods. The failure behavior and stress distribution of pier foundation were analyzed using the verified analysis method. Various design parameters(base plate, deformed bar, stiffness and sizes of column) were investigated to analyze effects of each design parameters in entire structure.

Riprap Scour Countermeasures around Nonuniform Bridge Piers (불균일단면교각 주위의 사석 세굴 보호공)

  • Yun, Tae-Hun;Park, Gi-Du
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.4
    • /
    • pp.385-392
    • /
    • 2000
  • An experimental investigation was conducted to determine the effect of a nonuniform pier on the stability of riprap placed around bridge piers. A nonuniform pier is one of which the cross-sectional dimension varies over the length of the pier and comprises a cylinder of diameter bp placed on a larger diameter of foundation bf. and the stability of riprap are significantly influenced by the height of foundation z. The critical height of foundation is defined as the height of foundation which has the same critical velocity to that of uniform pier without foundation, and it was found to be zc=0.8bf. For z

  • PDF

Bridge Foundation and Scour (교량기초와 세굴)

  • 곽기석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.11a
    • /
    • pp.168-187
    • /
    • 2002
  • Scour is the physical or chemical attack of flowing water which excavates and carries away material from stream beds and banks. Especially, hydraulic structures such as bridge piers and abutments placed in the channel causes the changes of the flow pattern like acceleration, the formation of vortices, and scour around the structures. Channel scour, especially bridge pier scour is the leading cause of bridge failures. It is very important to apply appropriate methods for both of scour analysis and protection. In this paper, several methods world-widely used for bridge scour analysis and protection are introduced and compared.

  • PDF

Development of Connection between CFT Column and Pier Foundation for Top-Down Construction (Top-Down 공사용 원형충전강관기둥과 피어기초의 개발)

  • Jeong, Mee-Ra;Rhim, Hong-Chul;Kim, Seung-Weon;Kim, Dong-Gun;Kang, Seung-Ryong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.29-32
    • /
    • 2009
  • Building foundations for Top-Down construction require a special setting, because the foundations have to be placed way before excavation for the substructure of main building, Usually, the foundation goes into the layer of rock and it is often called rock-pier foundation, Currently, a cage of steel reinforcing bars is inserted to the pre-excavated hole in the rock layer, hanging down from the wide flange steel column above. This paper presents a new method for connecting the prefounded column and the steel cage with a coupler for better connection between the two, The use of a circular Concrete Filled Tube (CFT) as a prefounded column makes it possible to have this type of connection. The details of the connection and application to a Top-Down construction site is also included in this paper.

  • PDF