• Title/Summary/Keyword: Piece-wise constant system

Search Result 3, Processing Time 0.016 seconds

Analysis of observability for strapdown inertial navigation system (스트랩다운 관성항법장치에 대한 가관측성 분석)

  • 정태호;박흥원;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.45-49
    • /
    • 1989
  • The observability of an strapdown inertial navigation system(SDINS) is investigated. The piece-wise constant systems are defined and the stepped observability matrix scheme is applied to observability analysis of SDINS theoretically, the results are compared with that of covariance simulation. It is found that SDINS is more observable than gimballed inertial navigation system (GINS) in the case of the variation of vehicle attitude, and is found that the stepped observability matrix theory is simple and useful for the analysis of the system observability but the results are not completely same as that of covariance simulation.

  • PDF

Observability Analysis of INS/GNSS System for Vehicles Moving with a Large Pitch Angle Change (피치각 변화가 큰 궤적에서의 INS/GNSS 통합항법 시스템 가관측성 분석)

  • Kim, Hyun-seok;Baek, Seung-jun;Kim, Hyung-Soo;Jo, Min-Su
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.3
    • /
    • pp.220-227
    • /
    • 2018
  • The most widely used method for constructing an inertial navigation system (INS)/global navigation satellite system (GNSS) coupling system is to construct an integrated navigation system using a Kalman filter. However, depending on the trajectory, non-observable state variables may be generated. In this case, the state variables are not estimated. To solve this problem, a integrated navigation system is constructed and then an observability analysis is performed. In this paper, a 24th order position-matched Kalman filter is defined to design an INS/GNSS integrated navigation system for vehicles moving with a large pitch angle change. To verify the appropriateness of the error state variables applied to the Kalman filter, an observability analysis was performed. The trajectory was divided into five segments, and the piece-wise constant system (PWCS) was assumed for each segment, and the results were analytically analyzed. The analytical results and the simulation results confirm that the error state parameters of the Kalman filter are well-designed to the estimation side.

Precise Orbit Determination of LEO Satellite Using Dual-Frequency GPS Data (이중 주파수 GPS 데이터를 이용한 저궤도 위성의 정밀궤도결정)

  • Hwang, Yoo-La;Lee, Byoung-Sun;Kim, Jae-Hoon;Yoon, Jae-Cheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.229-236
    • /
    • 2009
  • KOorea Multi-purpose SATellite(KOMPSAT)-5 will be launched at 550km altitude in 2010. Accurate satellite position(20 cm) and velocity(0.03 cm/s) are required to treat highly precise Synthetic Aperture Radar(SAR) image processing. Ionosphere delay was eliminated using dual frequency GPS data and double differenced GPS measurement removed common clock errors of both GPS satellites and receiver. SAC-C carrier phase data with 0.1 Hz sampling rate was used to achieve precise orbit determination(POD) with ETRI GNSS Precise Orbit Determination(EGPOD) software, which was developed by ETRI. Dynamic model approach was used and satellite's position, velocity, and the coefficients of solar radiation pressure and drag were adjusted once per arc using Batch Least Square Estimator(BLSE) filter. Empirical accelerations for sinusoidal radial, along-track, and cross track terms were also estimated once per revolution for unmodeled dynamics. Additionally piece-wise constant acceleration for cross-track direction was estimated once per arc. The performance of POD was validated by comparing with JPL's Precise Orbit Ephemeris(POE).