• Title/Summary/Keyword: Pickup and Delivery Problem with Time Windows

Search Result 4, Processing Time 0.02 seconds

An Optimization Algorithm for The Pickup and Delivery Problem With Time Windows (동일경로 제약을 갖는 집배송 차량 경로 수립 문제의 최적화 해법)

  • Kang, Ja-Young;Zang, Hee-Jeong;Kang, Jang-Ha;Park, Sung-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.1
    • /
    • pp.33-43
    • /
    • 2007
  • The pickup and delivery problem with time windows generally involves the construction of optimal routeswhich satisfy a set of transportation requests under pairing, precedence, time window, vehicle capacity, andavailability constraints. In this paper, we added some constraints to the problem and adopted an objectivefunction based on number of used vehicles, total travel distance and total schedule duration to consider morerealistic problems. A branch and price algohthm for the problem is proposed and an enumeration method is usedfor the subproblems. The algorithm was tested on randomly generated instances and computational results werereported.

Vehicle Routing Based on Pickup and Delivery in a Ubiquitous Environment : u-MDPDPTW (유비쿼터스 기반의 적하와 하역 배송경로문제: u-MDPDPTW)

  • Chang, Yong-Sik;Lee, Hyun-Jung
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.1
    • /
    • pp.49-58
    • /
    • 2007
  • MDPDPTW (Multi-Depot Pickup and Delivery Problem with Time Windows) is a typical model among the optimization models based on the pickup and delivery flow in supply chains. It is based on multi-vehicles in multi-depots and does not consider moving vehicles near pickup and delivery locations. In ubiquitous environments, it is possible to obtain information on moving vehicles and their baggage. Providing the proper context from the perspective of moving vehicles and their baggage allows for more effective vehicle routings. This study proposes Integer Programming-based MDPDPTW including the information on moving vehicles and their baggage in a ubiquitous environment: u-MDPDPTW, and shows the viability and effectiveness of u-MDPDPTW through comparative experiments of MDPDPTW and u-MDPDPTW.

  • PDF

Logistics Allocation and Monitoring System based on Map and GPS Information (Map과 GPS 기반의 혼적을 고려한 물류할당 및 모니터링 시스템)

  • Park, Chulsoon;Bajracharya, Larsson
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.138-145
    • /
    • 2018
  • In the field of optimization, many studies have been performed on various types of Vehicle Routing Problem (VRP) for a long time. A variety of models have been derived to extend the basic VRP model, to consider multiple truck terminal, multiple pickup and delivery, and time windows characteristics. A lot of research has been performed to find better solutions in a reasonable time for these models with heuristic approaches. In this paper, by considering realtime traffic characteristics in Map Navigation environment, we proposed a method to manage realistic optimal path allocation for the logistics trucks and cargoes, which are dispersed, in order to realize the realistic cargo mixing allowance and time constraint enforcement which were required as the most important points for an online logistics brokerage service company. Then we developed a prototype system that can support above functionality together with delivery status monitoring on Map Navigation environment. First, through Map Navigation system, we derived information such as navigation-based travel time required for logistics allocation scheduling based on multiple terminal multiple pickup and delivery models with time constraints. Especially, the travel time can be actually obtained by using the Map Navigation system by reflecting the road situation and traffic. Second, we made a mathematical model for optimal path allocation using the derived information, and solved it using an optimization solver. Third, we constructed the prototype system to provide the proposed method together with realtime logistics monitoring by arranging the allocation results in the Map Navigation environment.

Aircraft delivery vehicle with fuzzy time window for improving search algorithm

  • C.C. Hung;T. Nguyen;C.Y. Hsieh
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.393-418
    • /
    • 2023
  • Drones are increasingly used in logistics delivery due to their low cost, high-speed and straight-line flight. Considering the small cargo capacity, limited endurance and other factors, this paper optimized the pickup and delivery vehicle routing problem with time windows in the mode of "truck+drone". A mixed integer programming model with the objective of minimizing transportation cost was proposed and an improved adaptive large neighborhood search algorithm is designed to solve the problem. In this algorithm, the performance of the algorithm is improved by designing various efficient destroy operators and repair operators based on the characteristics of the model and introducing a simulated annealing strategy to avoid falling into local optimum solutions. The effectiveness of the model and the algorithm is verified through the numerical experiments, and the impact of the "truck+drone" on the route cost is analyzed, the result of this study provides a decision basis for the route planning of "truck+drone" mode delivery.