• Title/Summary/Keyword: Phytoplankton Composition

Search Result 178, Processing Time 0.027 seconds

The Community Structure of Phytoplankton in Winter and Summer Around Wangdol-cho (동해 왕돌초 주변 해역의 동계와 하계 식물플랑크톤 군집 분포)

  • Shim, Jeong-Min;Jin, Hyun-Gook;Sung, Ki-Tack;Hwang, Jae-Dong;Yun, Suk-Hyun;Lee, Yong-Hwa;Kim, Young-Suk;Kwon, Ki-Young
    • Journal of Environmental Science International
    • /
    • v.17 no.12
    • /
    • pp.1403-1411
    • /
    • 2008
  • Wangdol-cho, located 23 km offshore of Hupo in southwest of East Sea, is underwater rock floor, called to Wangdol-Am or Wangdol-Jam and has three tops as Mat-Jam, Middle-Jam and Set-Jam. The composition, abundance, diversity and community structure were investigated in winter and summer in 2002 around Wangdol-cho. The temperature around the Northwest and Southeast part of Wangdol-cho was influenced by the North Korea Cold Current (NKCC) and East Korea Warm Current (EKWC), respectively. Nutrient and chlorophyll-a concentration were higher at the top of Wangdol-cho than other area. A total of 41 genera and 78 species of phytoplankton were identified. The average cell abundance of phytoplankton in winter and summer were $286{\times}10^3\;cells/m^3,\;432{\times}10^3\;cells/m^3$ respectively. The largest community was Bacillariophyta containing 52 taxa. The dominant species were Lauderia anulata and Coscinodiscus spp. which preferred cold water in winter. In contrast, warm water species such as Rhizosolenia stolterfothii and Ceratium spp. were dominant in summer. The average species diversity index of phytoplankton in winter was higher than that in summer. According to dominant species and standing crops, phytoplankton community resulted in a clear separation. One group was western area, which showed low density, and the other was eastern area, which showed the higher density. The abundance and species composition of phytoplankton. were affected by topological characteristics around Wangdol-cho.

Trophic Role of Heterotrophic Nano- and Microplankton in the Pelagic Microbial Food Web of Drake Passage in the Southern Ocean during Austral Summer (남극 하계 드레이크 해협의 미세생물 먹이망에서 종속영양 미소형 및 소형플랑크톤의 역할)

  • Yang, Eun-Jin;Choi, Joong-Ki;Hyun, Jung-Ho
    • Ocean and Polar Research
    • /
    • v.33 no.4
    • /
    • pp.457-472
    • /
    • 2011
  • To elucidate the trophic role of heterotrophic nano- and microplankton (HNMP), we investigated their biomass, community structure, and herbivory in three different water masses, namely, south of Polar Front (SPF), Polar Front Zone (PFZ), the Sub-Antarcitc Front (SAF) in the Drake Passage in the Southern Ocean, during the austral summer in 2002. We observed a spatial difference in the relative importance of the dominant HNMP community in these water masses. Ciliates accounted for 34.7% of the total biomass on an average in the SPF where the concentration of chlorophyll-a was low with the dominance of pico- and nanophytoplankton. Moreover, the importance of ciliates declined from the SPF to the SAF. In contrast, heterotrophic dinoflagellates (HDFs) were the most dominant grazers in the PFZ where the concentration of chlorophyll-a was high with the dominance of net phytoplankton. HNMP biomass ranged from 321.9 to 751.4 $mgCm^{-2}$ and was highest in the PFZ and lowest in the SPF. This result implies that the spatial dynamic of HNMP biomass and community was significantly influenced by the composition and concentration of phytoplankton as a food source. On an average, 75.6%, 94.5%, and 78.9% of the phytoplankton production were consumed by HNMP in the SPF, PFZ, and SAF, respectively. The proportion of phytoplankton grazed by HNMP was largely determined by the composition and biomass of HNMP, as well as the composition of phytoplankton. However, the herbivory of HNMP was one of the most important loss processes affecting the biomass and composition of phytoplankton particularly in the PFZ. Our results suggest that the bulk of the photosynthetically fixed carbon was likely reprocessed by HNMP rather than contributing to the vertical flux in Drake Passage during the austral summer in 2002.

Effects of Physicochemical and Environmental Factors on Spatial and Temporal Variations in Phytoplankton Pigment and its Community Composition in Jinhae Bay (진해만에서 물리화학적 환경요인이 식물플랑크톤 색소 및 군집조성의 시공간적 변화에 미치는 영향)

  • Na, Sujin;Lee, Jiyoung;Kim, Jeong Bae;Koo, Jun-Ho;Lee, Garam;Hwang, Hyunjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.340-354
    • /
    • 2021
  • The aim of this study was to investigate the spatial and temporal distribution of phytoplankton biomass and community composition in Jinhae Bay on the southern coast of Korea. Phytoplankton pigment analysis was conducted using ultra performance liquid chromatography (UPLC) were conducted from April to December 2019 at seven stations. Temperature, salinity, and dissolved oxygen (DO) and inorganic nutrients (dissolved nitrogen, dissolved phosphorus, and orthosilicic acid) were measured to investigate the environmental factors associated with the structure of phytoplankton community. Phytoplankton biomass (Chl-a) was the highest in July (mean 15.4±4.3 ㎍/L) and the lowest in December (mean 3.5±0.6 ㎍/L). Fucoxanthin was the most abundant carotenoid and showed a similar variation pattern to Chl-a, peridinin, and Chl-b. Phytoplankton community composition analysis showed that diatoms were a predominant group with an average abundance of 70 % whereas chlorophytes, cryptophytes, and dinoflagellates often appeared with lower averages. Further, the dominance of diatoms was closely correlated with water temperature and N:P ratio, which might be influenced by high temperatures in the summer and nutrient loading from the land. Additionally, freshwater and nutrient input by rainfall was estimated to be the most important environmental factor. Hence, the spatial and temporal variations in the composition of phytoplankton pigments and phytoplankton community were correlated with physicochemical and environmental parameters.

Seasonal Changes of Phytoplankton Community in the Woopo and Mokpo Swamp (우포늪과 목포늪의 식물플랑크톤 군집의 계절적 변동)

  • Kim, Han-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.2 s.94
    • /
    • pp.90-97
    • /
    • 2001
  • The seasonal changes in phytoplankton standing crops, species composition, dominant species, species diversity and physico-chemical characteristics in Woopo and Mokpo swamps were studied from January to December, 1998. Phytoplankton of a total 353 taxa were identified, the composition of phytoplankton community was characetrized by green algae and diatoms and quantity composition of standing crops was dominated by green alga Oscillatoria sp. was especially prominent. The standing crops varied from 108 cells/ml and 118 cells/ml to 19,178 cells and 38,393 cells/ml in Woopo and Mokpo swamps, respectively. The maximum algal density was observed in November, Micractinium pusillum and Oscillatoria sp. usually contributed 83.2% to total cell numbers in Woopo swamp. However, the maximum density occurred in May when Oscillatoria sp. formed bloom in Mokpo swamp. The low species diversity of the phytoplankton coincided with maximum standing crops of the filamentous blue-green alga Oscillatoria sp. and green alga Micractinium pusillum in May and November.

  • PDF

A Study on the Phytoplankton Community in Choonsan Reservoir (춘산지(경남)의 식물플랑크톤 군집에 관한 연구)

  • 김종원;이학영
    • Journal of Environmental Science International
    • /
    • v.4 no.3
    • /
    • pp.177-186
    • /
    • 1995
  • The seasonal changes and composition of phytoplankton of the Choonsan reservior were studied from November 1990 to October 1991. 195 taxa which belong to 65 genera, 150 species, 40 varieties and 1 forms were identified. Species number during summer monthes was higher than that of other seasons. Standing crops of phytoplankton were varied from $7.8\times10^5$ cells/l to $2.2\timesl0^6$ cells/$\ell$. The dominant species were Cryptomonas erose and Trachelomonas volvoina. Chlorophyll a contents of phytoplankton was varied from $1.36\mu\textrm{g}/\ell$ to $127.46\mu\textrm{g}/\ell$. The biotic indices of phytoplankton were very similar among three sites. Saprobien-system by index of species diversity suggests that the Choonsan reservior belongs to the oligosaprophic.

  • PDF

Phytoplankton composition in intensive shrimp ponds in Bac Lieu province, Vietnam

  • Nguyen Thi Kim Lien;Phan Thi Cam Tu;Vo Nam Son;Huynh Truong Giang
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.8
    • /
    • pp.470-481
    • /
    • 2023
  • Algal overgrowth in shrimp culture ponds can affect the quality of the aquatic environment, thereby adversely affecting the shrimp and causing economic losses. The objective of this study was to evaluate the variation in phytoplankton composition in intensive shrimp ponds in Bac Lieu province, Vietnam. Phytoplankton samples were collected in three black tiger shrimp (Penaeus monodon) ponds and three whiteleg shrimp (Litopenaeus vannamei) ponds. The collected data were analyzed using SPSS and canonical correlation analysis softwares. In total, 75 species of phytoplankton were recorded in black tiger shrimp ponds and 64 species in whiteleg shrimp ponds. Diatoms had the highest species diversity with 29-30 species (39%-47%), followed by green algae with 9-19 species (14%-25%); species numbers of other phyla varied from 5-12 (8%-16%). The total number of phytoplankton species throughout the study varied from 34-50 species. Algal density was relatively high and ranged from 497,091-2,229,500 ind./L and 1,301,134-2,237,758 ind./L in black tiger shrimp and whiteleg shrimp ponds, respectively. The diatom density tended to increase during the final stage of the production cycle in black tiger shrimp ponds. Blue-green algae and dinoflagellates also increased in abundance at the end of the cycle, which can affect shrimp growth. Diatoms were significantly positively correlated with pH, salinity, total ammonia nitrogen, and nitrate (NO3-) concentrations (p < 0.05). Blue-green algae and dinoflagellates were positively correlated with salinity, phosphate (PO43-), and NO3-. Algal species diversity was lower in the whiteleg shrimp ponds than in the black tiger shrimp ponds. Several dominant algal genera were recorded in the shrimp ponds, including Nannochloropsis, Gyrosigma, Chaetoceros, Alexandrium, and Microcystis. The results of this study provide basic data for further investigations, and they contribute to the management of algae in brackish-water shrimp ponds.

Nutrients and Phytoplankton Blooms in the Southern Coastal Waters of Korea: I. The Elemental Composition of C, N, and P in Particulate Matter in the Coastal Bay Systems

  • Kang, Chang-Keun;Kim, Pyoung-Joong;Lee, Won-Chan;Lee, Pil-Yong
    • Journal of the korean society of oceanography
    • /
    • v.34 no.2
    • /
    • pp.86-94
    • /
    • 1999
  • An investigation was conducted to determine limiting nutrients in the bay systems of the southern coastal area of Korea. The elemental composition of C, N, and P in suspended particulate matter was monitored nearly monthly in Chinhae and Koje Bays and seasonally in Deukryang Bay for 2 years. Atomic C:N ratio in particulate matter ranges from 4.3 to 9.6, typical of marine phytoplankton. C:P and N:P ratios vary from the Redfield ratio to 229 (C:P) and 37 (N:P). A constant C:N ratio of 6.87 from regression of particulate C and N concentrations demonstrates that the particulate matter in the systems originates from primary production. C:P and N:P ratios from regression of C on P and N on P are well associated with changes in salinity. The low N:P ratio of 13.1 implies N limitation in the environments of the systems. This seems to result from the low N:P ratio of nutrients released across sediment-water interface. Phytoplankton response, expressed here as the increase of chlorophyll a, to N addition also verifies N limitation for phytoplankton communities. In heavy rainfall season (from June to September), the addition of excessive N via streams into the stratified coastal water proliferates phytoplankton greatly. During the phytoplankton blooms, C:P and N:P ratios are much higher than the Redfield ratio, implying P limitation. This results from the high N:P ratio in nutrients supplied from stream waters. Strong stratification during the blooms also interrupts the supply of nutrients, particularly p, from bottom waters. Dependent upon precipitation, this tendency shows great inter-annual variation.

  • PDF

Study of the Food Characteristics on Pacific Oyster Crassostrea gigas and Manila Clam Ruditapes phillippinarum in the Intertidal Zone of Taeahn, Korea (태안 조간대에 서식하는 참굴과 바지락의 먹이특성에 관한 연구)

  • Baek, Seung-Ho;Lee, Ju-Yun;Lee, Hea-Ok;Han, Myung-Soo
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.3
    • /
    • pp.145-158
    • /
    • 2008
  • To assess the source of oyster (Crassostrea gigas) and clam (Ruditapes phillippinarum), phytoplankton community structures in the water column and sediment, including the composition of phytoplankton in oyster and clam digestive organs were investigated bimonthly from December 2006 to June 2007 in the Taeahn coastal waters. During the sampling period, water temperature and salinity varied from 7 to 23$^{\circ}C$ and 34 to 35 PSU, respectively. Total phytoplankton abundances at St. O in the water column were higher than those at St. J, whereas total phytoplankton abundances at St. O in the sediment were lower. In addition, total phytoplankton abundances in the water column and sediment were observed to be relatively higher in February and April 2007. Among the diatoms, Paralia sulcata was always dominant, accounting for 41$\sim$87% of total phytoplankton, except St. J for February 2007 during the sampling period. The following phytoplankton compositions observed in the digestive organs of oyster and clam appeared: diatoms such as genus Paralia, Navicula, Melosira and Coscinodiscus, Silicoflagellate Dictyocha, dinoflagellates Prorocentrum and Dinophysis. Phytoplankton compositions observed in the digestive organs of oyster and clam corresponded relatively well with the species composition appeared in the water column and sediments of each season. A significant relationship was found between individual weight of oyster or clam and their digestive organs weight, while there was not a close correlation with total phytoplankton amount. We suggest that P. sulcata always dominated as one of important the food source of oyster and clam in the marine ranching ground of Taeahn coastal waters.

Seasonal Change of Phytoplankton Dominant Species Based on Water Mass in the Coastal Areas of the East Sea (동해 연안 수괴 특성에 따른 식물플랑크톤 우점종의 계절 변동)

  • Shim, Jeong-Min;Kwon, Ki-Young;Kim, Sang-Woo;Yoon, Byong-Seon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.474-483
    • /
    • 2015
  • In order to understand the seasonal change of phytoplankton as well as the effect of water physico-chemical parameters, we investigated 18 stations in coastal areas of the East Sea in February, May, August and November in 2009. The taxa of phytoplankton observed in this study were classified as 37 Bacillariophyceae, 22 Dinophyceae, 1 Euglenophyceae, 3 Dictyophyceae and 1 Cryptophyceae. Phytoplankton abundance ranged from $1.2{\times}10^3cells/L$ to $246.6{\times}10^3cells/L$(with a mean value of $24.8{\times}10^3cells/L$), the highest biomass was observed in May. The dominant species were Leptocylindrus danicus, Chaetoceros affinis, Pseudo-nitzschia pungens, Thalassionema nitzschioides and etc. Pearson's correlation co-efficient between phytoplankton abundance and other water parameters showed the positive relationships with pH, DO, Secchi-disk depth, and SS, the negative relationships with $SiO_2-Si$. Seasonal patterns of phytoplankton dominant species were affected by the characteristics of water masses based on T-S diagram analysis. In particular, phytoplankton distributional patterns were related with water temperature in May and salinity in August, respectively. According to the result of MDS(Multi-dimensional scaling) using the phytoplankton abundance and species composition, the spatial distribution of phytoplankton were characterized with Ganwon(Group A) and Gyeongbuk(Group B) at the coastal areas of Jukbyeon or Uljin.

A Study of Variation Characteristics of the Phytoplankton Community by UPLC Located in the Jinju Bay, Korea (UPLC를 이용한 남해 진주만 식물플랑크톤 군집 변동특성 연구)

  • Lee, Eugene;Son, Moonho;Kim, Jeong Bea;Lee, Won Chan;Jeon, Ga Eun;Lee, Sang Heon
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.1
    • /
    • pp.62-72
    • /
    • 2018
  • In order to provide important information for the efficient management of the identified farm ecosystem in Jinju Bay, we investigated the spatial and temporal distribution of the phytoplankton community using a UPLC pigment analysis and a CHEMTAX program from the timeframe of February 2013 to January 2014. In addition, we measured the available physical and chemical parameters controlling the distribution of the phytoplankton communities. As a result of this comprehensive pigment analysis, it was noted that the Diatoms were the predominant species with an average of 77.1% as noted located in Jinju Bay. It was discovered that during the summer season, the phytoplankton community composition was changed by a reduction of diatoms and noted increases of the Cryptophytes, Prasinophytes, and Dinoflagellates. Especially, it was noted that the Cryptophytes and Prasinophytes were shown with an average of 18.8% and 17.8% in June, respectively. However, it was revealed that the Cryptophytes and Prasinophytes were not shown by a microscopic observation. The phytoplankton community composition was correlated with the temperature and salinity variations as noticed in the Jinju Bay. Therefore, the water temperature and freshwater inputs in the Jinju Bay were important environmental factors for controlling the phytoplankton community composition and the varying Cryptophytes and the noted amounts of Prasinophytes as well.