• Title/Summary/Keyword: Phytophthora capsici

Search Result 291, Processing Time 0.031 seconds

Biological Control of Soilborne Diseases on Tomato, Potato and Black Pepper by Selected PGPR in the Greenhouse and Field in Vietnam

  • Thanh, D.T.;Tarn, L.T.T.;Hanh, N.T.;Tuyen, N.H.;Srinivasan, Bharathkumar;Lee, Sang-Yeob;Park, Kyung-Seok
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.263-269
    • /
    • 2009
  • Bacterial wilt, Fusarium wilt and Foot rot caused by Ralstonia solanacearum, Fusarium oxysporum, and Phytophthora capsici respectively, continue to be severe problems to tomato, potato and black pepper growers in Vietnam. Three bio-products, Bacillus vallismortis EXTN-1 (EXTN-1), Bacillus sp. and Paenibacillus sp. (ESSC) and Bacillus substilis (MFMF) were examined in greenhouse bioassay for the ability to reduce bacterial wilt, fusarium wilt and foot rot disease severity. While these bio-products significantly reduced disease severities, EXTN-1 was the most effective, providing a mean level of disease reduction 80.0 to 90.0% against bacterial wilt, fusarium wilt and foot rot diseases under greenhouse conditions. ESSC and MFMF also significantly reduced fusarium wilt, bacterial wilt and foot rot severity under greenhouse conditions. Bio-product, EXTN-1 with the greatest efficacy under greenhouse condition was tested for the ability to reduce bacterial wilt, fusarium wilt and foot rot under field condition at Song Phuong and Thuong Tin locations in Ha Tay province, Vietnam. Under field condition, EXTN-1 provided a mean level of disease reduction more than 45.0% against all three diseases compared to water treated control. Besides, EXTN-1 treatment increased the yield in tomato fruits 17.3% than water treated control plants.

Growth and Fruit Characteristics of Selections from Local Cultivars of Pepper (고추 주요 재래종 선발계통의 생육 및 과실 특성)

  • Kown, Young Seok;Kim, Byung Soo;Jeong, Ho Jeong
    • Current Research on Agriculture and Life Sciences
    • /
    • v.10
    • /
    • pp.117-123
    • /
    • 1992
  • Twenty and 24 lines selected from Korean local cultivar, Kalmi and Punggak, respectively, were grown in the University experiment farm to select promising lines for recurrent parent in a backcross breeding program for incorporation of resistance to Phytophthora capsici and Xanthomonas campestris pv vesicatoria into the Korean local cultivars. All the selections of 'Kalmi' and 'Punggak' were relatively late in maturity and the range of the variation was wider in the selections of 'Kalmi' than in those of 'Punggak'. Many of the selections from 'Kalmi' were vigorous, high in sugar content, and tolerant to virus in the field. Many of the selections from 'Punggak' were bearing large fruits with thick pericarp and high milling percentage. Line 6, 9, 14, 18 of 'Kalmi' and line 14, 16, 18 of 'Punggak' were selected as promising lines for recurrent parent in the backcross program.

  • PDF

A Bacterial Endophyte, Pseudomonas brassicacearum YC5480, Isolated from the Root of Artemisia sp. Producing Antifungal and Phytotoxic Compounds

  • Chung, Bok-Sil;Aslam, Zubair;Kim, Seon-Won;Kim, Geun-Gon;Kang, Hye-Sook;Ahn, Jong-Woong;Chung, Young-Ryun
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.461-468
    • /
    • 2008
  • An endophytic bacterial strain YC5480 producing antifungal and phytotoxic compounds simultaneously was isolated from the surface sterilized root of Artemisia sp. collected at Jinju area, Korea. The bacterial strain was identified as a species of Pseudomonas brassicacearum based on its 16S rRNA gene sequence analysis and physiological and biochemical characteristics. The seed germination and growth of monocot and dicot plants were inhibited by culture filtrate (1/10-strength Tryptic Soy Broth) of the strain. The germination rate of radish seeds in the culture filtrate differed in various culture media. Only 20% of radish seeds germinated in the culture media of 1/2 TSB for 5 days incubation. Mycelial growth of fungal pathogens, Colletotrichum gloeosporioides, Fusarium oxysporum and Phytophthora capsici was also inhibited by the culture filtrate of the strain YC5480. An antifungal compound, KS-1 with slight inhibitory activity of radish seed germination at 1,000 ppm and a seed germination inhibitory compound, KS-2 without suppression of fungal growth were produced simultaneously in TSB. The compounds KS-1 and KS-2 were identified to be 2,4-diacetylphloroglucinol (DAPG) and 2,4,6-trihydroxyacetophenone (THA), respectively.

Root Colonization and ISR-mediated Anthracnose Disease Control in Cucumber by Strain Enterobacter asburiae B1

  • Bharathkumar, S.;Park, Jin-Woo;Han, Ji-Hee;Park, Kyung-Seok
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.333-343
    • /
    • 2009
  • Here, we show that an endophytic bacterial strain, Enterobacter asburiae B1 exhibits the ability to elicit ISR in cucumber, tobacco and Arabidopsis thaliana. This indicates that strain B1 has a widespread ability to elicit ISR on various host plants. In this study, E. asburiae strain B1 did not show antifungal activity against tested major fungal pathogens, Colletotrichum orbiculare, Botrytis cinerea, Phytophthora capsici, Rhizoctonia solani, and Fusarium oxysporum. Moreover, the siderophore production by E. asburiae strain B1 was observed under in vitro condition. In greenhouse experiments, the root treatment of strain B1 significantly reduced disease severity of cucumber anthracnose caused by fungal pathogen C. orbiculare compared to nontreated control plants. By root treatment of strain B1 more than 50% disease control against anthracnose on cucumber was observed in all greenhouse experiments. Simultaneously, under the greenhouse condition, the soil drench of strain B1 and a chemical inducer benzothiadiazole (BTH) to tobacco plants induced GUS activity which is linked with activation of PR promoter gene. Furthermore, in Arabidopsis thaliana plants the soil drench of strain B1 induced the defense gene expression of PR1 and PDF1.2 related to salicylic acid and jasmonic acid/ethylene signaling pathways, respectively. In this study, for the main focus on root colonization by strain B1 associated with defense responses, bacterial cells of strain B1 was tagged with the gfp gene encoding the green fluorescent protein in order to determine the colonization pattern of strain B1 in cucumber. The gfp-tagged B1 cells were found on root surface and internal colonization in root, stem, and leaf. In addition to this, the scanning electron microscopy observation showed that E. asburiae strain B1 was able to colonized cucumber root surface.

Molecular Characterization of Biosynthetic Genes of an Antifungal Compound Produced by Pseudomonas fluorescens MC07

  • Kim Jin-Woo;Kim Eun-Ha;Kang Yong-Sung;Choi Ok-Hee;Park Chang-Seuk;Hwang In-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.450-456
    • /
    • 2006
  • Pseudomonas fluorescens MC07 is a growth-promoting rhizobacterium that suppresses mycelial growth in fungi such as Rhizoctonia solani, Pythium ultimum, Fusarium oxysporum, and Phytophthora capsici. To determine the role of the bacterium's antifungal activity in disease suppression, we screened 2,500 colonies generated by Tn5lacZ insertions, and isolated a mutant 157 that had lost antifungal activity. The EcoRI fragment carrying Tn5lacZ was cloned into pBluescript II SK(+) and used as a probe to isolate wild-type clones from a genomic library of the parent strain, MC07. Two overlapping cosmid clones, pEH4 and pEH5, that had hybridized with the mutant clone were isolated. pEH4 conferred antifungal activity to the heterologous host P.fluorescens strain 1855.344, whereas pEH5 did not. Through transposon mutagenesis of pEH4 and complementation analyses, we delineated the 14.7-kb DNA region that is responsible for the biosynthesis of an antifungal compound. DNA sequence analysis of the region identified 11 possible open reading frames (ORF), ORF1 through ORF11. A BLAST search of each putative protein implied that the proteins may be involved in an antifungal activity similar to polyketides.

Plant Growth Promotion and Induced Resistance by the Formulated Bacillus vallismortis BS07M in Pepper (Bacillus vallismortis BS07M 제형의 고추 생장촉진과 병저항성 유도)

  • Lee, Yong Ho;Song, Jaekyeong;Weon, Hang-Yeon;Park, Kyungseok;Sang, Mee Kyung
    • Research in Plant Disease
    • /
    • v.22 no.4
    • /
    • pp.284-288
    • /
    • 2016
  • A plant growth promoting rhizobacterium, Bacillus vallismortis BS07M, was formulated as a clay pellet (CP) to evaluate its pepper growth promotion and induced resistance against various diseases under field and storage conditions. Peppers were grown in 50-hole tray containing potting mixture with CP in seedling raising stage, and then it was transplanted into a field. After transplanting, pepper plants treated with CP in seedling raising stage increased shoot growth and reduced disease severity caused by Phytophthora capsici in detached pepper leaves compared to untreated control. Moreover, treatment with CP in seedling raising stage increased fruit weight per plant; after harvesting, pepper fruits shown reduced diameter of lesions by Colletotrichum acutatum, and occurrance of soft rot in storage condition. These results indicated that CP could affect plant growth and induced resistance in pepper plants under field condition, and maintenance of fruit during storage.

Purification of Antifungal Antibiotic NH-B1 from Actinomycete NH 50 Antagonistic to Plant Pathogenic Fungi (식물병원진균에 길항효과가 있는 방선균 균주 NH50에서 항진균성 항생물질 NH-B1의 순수 분리)

  • 김현겸;김범석;문석식;황병국
    • Korean Journal Plant Pathology
    • /
    • v.14 no.3
    • /
    • pp.191-202
    • /
    • 1998
  • About 300 actinomycetes were isolated from two forest and one sea-shore soil and tested for inhibitory effects on mycelial growth of six plant pathogenic fungi Magnaporthe grisea, Alternaria mali, Colletotrichum gloeosporioides, Phytophthora capsici, Fusarium oxysporum f. sp. cucumerinum, and Rhizoctonia solani. Among 300 actinomycetes tested, only 16 actinomycetes showed the antifungal activity against the test fungi. Isolate NH 50 was selected for production and purification of antifungal antibiotic substances. Actinomycete isolate NH 50 displayed the broad antifungal spectra against 11 plant pathogenic fungi. To identify actinomycete isolate NH 50, cultural characteristics on various agar media, diaminopimelic acid type, and morphological characteristics by scanning electron microscopy were examined. As a result, actinomycete isolate NH 50 was classified as a rare actinomycete that had LL-DAP type and did not produce spores. After incubation of isolate NH 50 in yeast extract-malt extract-dextrose broth, antifungal compound NH-B1 that inhibited mycelial growth of some plant pathogenic fungi was purified from the methanol eluates of XAD-16 resins by a series of purification procedures, i.e., silica gel flash chromatography, C18 flash chromatography, Sephadex LH-20 column chromatography, silica gel medium pressure liquid chromatography (MPLC), C18 MPLC, and high pressure liquid chromatography (HPLC). UV spectrum and 1HNMR spectrum of antifungal compound NH-B1 dissolved in methanol were examined. The antibiotic NH-B1 showed the major peaks at 230 and 271.2nm. Based on the data of 1H-NMR spectrum, NH-B1 was confirmed to be an extremely complex polymer of sugars called polysaccharides. The antibiotic NH-B1 showed strong antifungal activity against Alternaria solani and Cercospora kikuchi, but weak activity against M. grisea.

  • PDF

Isolation and Evaluation of Protective Effect against Fusarium Wilt of Sesame Plants of Antibiotic Substance from Bacillus polymyxa KB-8

  • Hyun, Jae-Wook;Kim, Young-Hoon;Lee, Yong-Se;Park, Won-Mok
    • The Plant Pathology Journal
    • /
    • v.15 no.3
    • /
    • pp.152-157
    • /
    • 1999
  • An antibiotic compound was isolated from the culture of an antagonist against Fusarium oxysporum f. sp. sesami, Bacillus polymyxa strain KB-8, and tested for the control of Fusarium wilt of sesame in greenhouse conditions. Optimum conditions for culturing the antagonist to obtain the maximum antibiotic activity were determined using different culture media, initial medium acidity, and incubation periods for which yeast -malt extract agar with the initial acidity of pH 5 and over 13 days culture were best. Antibiotic substances extracted by methanol had 2 main fractions, KB-8A and KB-8B, in thin layer chromatography (OLC) with Rf values of 0.35 and 0.67 in a solvent system of chloroform : methanol = 7 : 3. The fraction KB-8A wa purified further by XAD-2, silica gel and Sephadex LH-20 column chromatography, and crystalization. Its minimum inhibitory concentrations (MICs) were $12.8\mu\textrm{g}$/ml for F. oxysporum and Alternaria mali, $6.4\mu\textrm{g}$/ml for Colletotrichum gloeosporioides and Rhizoctonia solani, and $3.2\mu\textrm{g}$/ml for Phytophthora capsici. Soil drenching of antibiotic KB-8A in the concentrations of $13.0\mu\textrm{g}$/ml and $26.0\mu\textrm{g}$/ml effectively inhibited the Fusarium wilt of sesame in a greenhouse test, which appeared to be comparable to the fungicide benlate of $6.5\mu\textrm{g}$ a. i./ml.

  • PDF

Selection of Antagonistic Bacteria for Biocontrol of Botrytis cinerea Causing Gray Mold on Vitis spp (포도 잿빛곰팡이병의 생물적 방제를 위한 길항세균 선발)

  • Seo, Sang-Tae;Park, Jong-Han;Han, Kyoung-Suk;Cheong, Seung-Ryong
    • Research in Plant Disease
    • /
    • v.12 no.3
    • /
    • pp.267-271
    • /
    • 2006
  • Botrytis cinerea Pers. was found to be highly virulent to the grapevine plant, especially in greenhouse condition. Pseudomonas species play key roles for the biocontrol of many plant diseases especially in soil. Of the 83 isolates of Pseudomonas spp., a bacterial strain P84, isolated from tomato rhizosphere, was shown to suppress a wide range of phytopathogenic fungi in vitro. The isolate was identified as Pseudomonas putida on the basis of its bacteriological and genetic characteristics. The P. putida P84 strain carry the phlD gene for 2,4-diacetylphloroglucinol biosynthesis and may produce the antibiotics as an antagonistic mechanism involved in biocontrol. The antagonistic activity of the bacterium has a promising implication for its use as a biocontrol agent to control grapevine gray mold.

Phytopathogenic Activities of Essential Oils and Their Main Compounds (식물오일과 그 성분들의 살균활성)

  • Choi, Won-Sik;Kim, Kwan-Young;Jang, Do-Yeon;Um, Dae-Yong;Kim, Tae-Jun;Jung, Bong-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.3
    • /
    • pp.201-209
    • /
    • 2006
  • Antifungal activities of 43 different plant oils were evaluated against different phytopathogenic fungi. Thyme oil showed highest antifungal activity among the tested oils. The major of thyme oil were found to be thymol, carvacrol, bomeol, p-cymene and linalool. Thymol and carvacrol were found to be responsible for thyme's antifungal activity. The spore germination assay was conducted on Alternaria mail and Botrytis cinerea. Thymol and carvacrol strongly inhibited spore germination in the fungi test. In addition, thymol and carvacrol showed a curative effectiveness to gray mold disease on cucumber crop. The antifungal activities of alkylphenol and alkylaniline compounds, which has similar molecular structure to that of thymol or cavacrol, were also tested. It was found that alkylphenol compounds also show higher inhibition to spore germination. Thus, thymol, carvacrol and alkylphenol compounds can be used an potent antifungal agents.