• Title/Summary/Keyword: Phytase production

Search Result 107, Processing Time 0.022 seconds

Effects of Microbial Phytase Replacing Partial Inorganic Phosphorus Supplementation and Xylanase on the Growth Performance and Nutrient Digestibility in Broilers Fed Wheat-based Diets

  • Peng, Y.L.;Guo, Y.M.;Yuan, J.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.2
    • /
    • pp.239-247
    • /
    • 2003
  • Two experiments were conducted with broilers to investigate the feasibility of microbial phytase replacing partial inorganic phosphorus supplementation and the synergistic effects of xylanase (320 FTU/kg) supplementation alone or in combination with phytase (750 U/kg) replacing 0.08% dietary inorganic phosphorus, on the growth performance and utilization of nutrients in broilers fed wheat-based diets. In Experiment 1, 540 broilers were fed five diets for 6 weeks. Diets C0 and C1 were corn-based diets and 0.08% inorganic P supplementation was replaced with 750 U phytase/kg feed in Diet C1. Diets W0, W1 and W2 were wheat-based diets supplemented with microbial phytase 0, 750, 750 U/kg feed and 0, 0.08% and 0.16% dietary inorganic P were replaced, respectively. In Experiment 2, 432 broilers were divided into four treatments to determine the synergistic effects of supplemental xylanase and phytase replacing 0.08% inorganic P. Four experimental diets were arranged according to a $2{\times}2$ factorial design. The results indicated that addition of phytase increased the digestibility of phytic P by 31.0 to 55%, dramatically decreased the excretion of phytic P and total P by 31.6 to 55.0% and 13.8 to 32.9%, respectively (p<0.01). It is feasible to completely replace 0.08% inorganic phosphorus supplementation with microbial phytase 750 U/kg in corn- or wheat-based diets for broilers. Addition of xylanase alone or in combination with phytase replacing 0.08% dietary inorganic P, increased body weight gain and feed utilization efficiency of broilers fed wheat-based diets (p<0.10) and decreased overall mortality (p<0.10). In the groups of birds supplementing xylanase 320 FTU/kg feed, a marked elevation of the dietary AME was observed (p<0.05). Addition of phytase replacing 0.08% dietary inorganic phosphorus, concurrently with xylanase supplementation had additive effects on the apparent digestibility of dietary phytic P and overall feed conversion ratio (p<0.05).

Efficacy of Supplemental Microbial Phytase on Laying Performance and Phosphorus Utilization I. Effect of Microbial Phytase at Different Phosphorus Levels on Laying Performance and Phosphorus Utilization (산란 생산성과 인 이용성에 대한 Microbial Phytase의 첨가 효과 I. 무기태인 수준이 다른 사료에 Microbial Phytase 첨가가 산란상 및 인 이용성에 미치는 영향)

  • 김상호;유동조;나재천;최철환;상병돈;이상진;이원준;류경선
    • Korean Journal of Poultry Science
    • /
    • v.27 no.1
    • /
    • pp.19-23
    • /
    • 2000
  • The effects of microbial phutase on laying performance and phosphorus utilization were examined at different levels of dietary nonphosphorus(NPP) in 320 23-week-old Hy-line brown hens for 12weeks. Diets were formulated 0.275%(T1), 0.220%(T2), 0.165%(T3) of NPP levels, and supplemental microbial phytase was 300DPU/kg diet constantly. Conventional diet(C) was formulated 0.275% NPP level without microbial phytase. Egg production and egg mass were higher in T2 than the others (p<0.05), and average egg weight was higher in T1 than the other (p<0.05). Egg productivity was tended to increase with supplemental phytase compared to conventional diet. Daily feed intake a hen also increased in T2 (p<0.05). Feed conversion ratio was improved slightly without significant difference. Eggshell breaking strength and thickness were not different significantly among the treatments. Haugh unit and yolk color were also not different. Calcium and phosphorus retention in body increased in T2 (p<0.05), but dry matter and nitrogen retention were not different significantly. Differences in nitrogen and calcium excretions were not found among the treatments. But phosphorus excretion decreased in order of dietary phosphorus levels with supplement phytase compared to C (p<0.05). Tibial ash, calcium and phosphorus were similar among the treatments. In conclusion, supplemental microbial phytase in laying diet may help to utilize phytase phosphorus, and could decrease NPP intake.

  • PDF

Effects of Dietary Lysine and Microbial Phytase on Growth Performance and Nutrient Utilisation of Broiler Chickens

  • Selle, P.H.;Ravindran, V.;Ravindran, G.;Bryden, W.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.7
    • /
    • pp.1100-1107
    • /
    • 2007
  • The effects of offering broilers phosphorus-adequate diets containing 10.0 and 11.8 g/kg lysine, without and with 500 FTU/kg exogenous phytase, on growth performance and nutrient utilisation were determined. Each of the four experimental diets was offered to 6 replicates of 10 birds from 7 to 28 days of age. Effects of treatment on performance, apparent metabolisable energy, apparent ileal digestibility of amino acids and bone mineralisation were examined. Both additional lysine and phytase supplementation improved (p<0.05) weight gain and feed efficiency, with interactions (p<0.05), as phytase responses were more pronounced in lysine-deficient diets. Phytase improved (p<0.05) apparent metabolisable energy, which was independent of the dietary lysine status. Bone mineralisation, as determined by percentage toe ash, was not affected by treatment, which confirms the phosphorus-adequate status of the diets. Phytase increased (p<0.05) the apparent ileal digestibility of the sixteen amino acids assessed. Unexpectedly, however, the dietary addition of 1.8 g/kg lysine, as lysine monohydrochloride, increased (p<0.05) the ileal digestibility of lysine per se and also that of isoleucine, methionine, phenylalanine, valine, aspartic acid, glutamic acid and tyrosine. In addition, there were significant interactions (p<0.05) between additional lysine and phytase supplementation for arginine, lysine, phenylalanine, aspartic acid, glutamic acid, glycine and serine digestibilities, with the effects of phytase being more pronounced in lysine-deficient diets. The possible mechanisms underlying the increases in amino acid digestibility in response to additional lysine and the interactions between lysine and microbial phytase in this regard are discussed. Also, consideration is given to the way in which phytate and phytase may influence ileal digestibility of amino acids.

The Effects of Phytase Supplementation on the Performance of Broiler Chickens Fed Diets With Different Levels of Non-Phytate Phosphorus

  • Lim, H.S.;Namkung, H.;Um, J.S.;Kang, K.R.;Kim, B.S.;Paik, I.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.2
    • /
    • pp.250-257
    • /
    • 2001
  • An experiment was conducted to determine the effects of phytase supplementation to the diets containing different levels of non-phytate phosphorus (NPP). A $3{\times}2$ factorial arrangement of treatments was employed. There were three dietary NPP levels of control (C) (0.45% for starter diet and 0.35% for grower diet), C-0.1% NPP (0.35% for starter diet and 0.25% for grower diet), and C-0.2% NPP (0.25% for starter diet and 0.15% for grower diet) and two phytase levels (0 and 500 U/kg). Reduced dietary NPP decreased feed intake and weight gain and increased mortality whereas dietary phytase increased feed intake and weight gain and decreased mortality. Supplemental phytase improved availabilities of dry matter, crude fat, ash, P, Zn, Mg, and Cu whereas dietary NPP level did not affect availabilities of nutrients except decreased Zn availability and increased Cu availability in reduced NPP diets. Nutrient retention of N, ash, Ca, P, Mg, and Zn were linearly decreased as dietary NPP levels reduced but dietary phytase increased their retention. Reduced dietary NPP increased ash excretion but decreased P and Cu excretion while dietary phytase decreased N excretion. Weight, length, girth and contents of ash, Ca, P and Mg of tibia linearly decreased as dietary NPP levels reduced. Dietary phytase increased length and ash content of tibia. It is concluded that dietary phytase can reduce P excretion and alleviate adverse affects caused by feeding low dietary NPP. Effects of phytase were greater in the lower NPP diets.

The Effect of Calcium Level on Microbial Phytase Activity and Nutrient Balance in Swine

  • Li, Defa;Che, X.R.;Wang, Y.Q.;Qiao, S.Y.;Cao, H.;Johnson, W.;Thacker, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.2
    • /
    • pp.197-202
    • /
    • 1999
  • Three barrows weighing 45.0 kg, fitted with simple T-cannulas in both the duodenum and terminal ileum, were assigned to diets in a $3{\times}3$ Latin Square design experiment to determine the effect of two calcium levels (0.8% vs 0.4%) on phytase activity and nutrient balance in growing pigs. The control diet contained 0.8% calcium, with no added inorganic phosphorus (0.45% total phosphorus) and no added phytase. The two additional experimental diets contained microbial phytase (750 phytase units/kg) and supplied either 0.8% or 0.4% calcium. With added microbial phytase, ileal and total tract digestibility of rotal phosphorus were improved by 20.9 and 13.8 percentage units, respectively (p=0.01). The apparent duodenal and ileal digestibility of phytate phosphorus were increased by 51.8 and 49.7 percentage units (p=0.01). Lowering dietary calcium in the presence of microbial phytase increased the digestibility of phytate phosphorus by an additional 10.9 (p=0.001) and 5.7 percentage units for duodenal and ileal digestibility, respectively. Supplementation with microbial phytase significantly reduced fecal excretion of nitrogen and phosphorus and increased the percentage of these nutrients retained by the pig. Lowering dietary calcium further increased the percentage of dietary phosphorus retained. Overall, reducing dietary calcium appeared to increase the effectiveness of added microbial phytase in degrading phytate phosphorus. As a result, care should be taken to avoid high levels of dietary calcium when supplementing swine diets with microbial phytase.

The Effect of Phytase and Organic Acid on Growth Performance, Carcass Yield and Tibia Ash in Quails Fed Diets with Low Levels of Non-phytate Phosphorus

  • Sacakli, P.;Sehu, A.;Ergun, A.;Genc, B.;Selcuk, Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.2
    • /
    • pp.198-202
    • /
    • 2006
  • An experiment was conducted to investigate the effect of phytase, organic acids and their interaction on body weight gain, feed consumption, feed conversion ratio, carcass yield and tibia ash. A total of 680 three-day old Japanese quail chicks (Coturnix coturnix japonica) were assigned to 20 battery brooders, 34 chicks in each. The experimental period lasted 35 days. The treatment groups employed were: 1) a positive control which included 3.5 g available phosphorus (AP)/kg diet and 10 g Ca/kg diet; 2) a negative control which included 2 g AP/kg diet and 8 g Ca/kg diet, 3) negative control diet supplemented with either 300 FTU phytase/kg diet (phytase) or 4) 2.5 g organic acid (lactic acid+formic acid)/kg diet (organic acid); or 5) 300 FTU phytase/kg diet+2.5 g organic acid/kg diet (phytase+organic acid). All birds were fed with the positive control diet for a week and then transferred to the dietary treatments. At the end of the study, there were no differences (p>0.005) among the groups in body weight, weight gain, feed consumption, feed conversion ratio and carcass yield. Tibia ash, however, was reduced (p<0.001) for quails fed the negative control diet containing a low-level of AP compared to the positive control diet containing adequate AP. The addition of phytase, organic acid or phytase+organic acid to the diets containing the low-level of AP improved (p<0.001) tibia ash. On the other hand, an extra synergistic effect of phytase and organic acid on tibia ash was not determined. This study demonstrated that it may be possible to reduce supplemental level of inorganic P with phytase and/or organic acid supplementation for quail diets without adverse effect on performance and tibia ash.

Cloning and Expression of Escherichia coli K13 Phytase Gene (appA13) Isolated from Seawater

  • Kim Young-Ok;Kim Han-Woo;Lee Jung-Ho;Kim Kyung-Kil;Lee Jong-Yun
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.1
    • /
    • pp.20-26
    • /
    • 2003
  • A bacterial strain was isolated from seawater to screen for phytase activities. A colony had the highest activity and was identified as an Escherichia coli strain. Using primers derived from E. coli acid phosphatase appA sequence, we cloned a 1,495 bp DNA fragment connected with the pGEM-T vector. It was over-expressed under lac promoter combined with its native promoter in E. coli $DH5\alpha$. The expression of the phytase gene occurred during late exponential growth and the intracellular phytase production was 16.9 units/ml. The yield of recombinant phytate was 412-fold higher than that of wild type E. coli K13.

Influences of Supplemental Plant Phytase (Phytazyme®) on Performances and Phosphorus Excretion in Laying Hens (사료내 식물성 Phytase (Phytazyme®) 첨가가 산란계의 생산성 및 인 이용성에 미치는 영향)

  • Kwon, S.K.;Kim, S.K.;An, B.K.;Yang, U.M.;Nam, K.T.;Kang, C.W.;Kang, S.J.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.55-60
    • /
    • 2002
  • Two experiments were conducted to investigate the effect of dietary supplementation of plant phytase (Phytazyme$^{(R)}$) in corn-soybean meal based diets on utilization of phytase-bound phosphorus in laying hens and evaluate nitrogen(N) digestibility and phosphorus(P) availability in breeders. In the experiment one, three levels of the Phytazyme$^{(R)}$(0.05, 0.1, and 0.2% of diet) were added to diets containing a half of control TCP level(0.96%) for 4 wks. Feed consumption, egg production rate, egg weight and eggshell quality were recorded weekly. At the end of experiment, 8 birds per treatment were sacrificed, liver weight were weighed and right tibiae were removed for determination of P content. The second experiment was conducted to evaluate the P availability and nitrogen digestibility in breeders fed same diets for 2 wks. Feed and excreta were collected to determine the P and N contents for the last three days of experiment two. Addition of Phytazyme$^{(R)}$ resulted in no effects on feed intake, egg product rate, egg weight and egg shell quality. P excretion decreased and its availability enhanced as phytase supplementation increased in diets. Dietary supplementation of Phytazyme$^{(R)}$ above 0.1% level in corn-soybean meal based diets did not have an adverse effect on production and decreased level of phosphorus in excreta.

Using Enzyme Supplemented, Reduced Protein Diets to Decrease Nitrogen and Phosphorus Excretion of Broilers

  • Jacob, Jacqueline P.;Ibrahim, Sami;Blair, Robert;Namkung, Hwan;Paik, In Kee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.11
    • /
    • pp.1561-1567
    • /
    • 2000
  • An experiment was conducted to investigate the effect of dietary protein levels and supplementation of phytase and pentosanase in wheat-soybean meal diet on the performance and output of N and P in broilers. Addition of phytase alone or in combination with pentosanase to reduced or control protein diets did not affect average final body weight of mixed sexes. However, addition of phytase and pentosanase in combination to reduced protein diets in male broilers significantly depressed body weights. Intestinal viscosity of 21d broilers was significantly decreased by addition of phytase and pentosanase alone or in combination. Tibia ash content was significantly increased by phytase supplementation. Supplementation of phytase alone and in combination with pentosanase to reduced protein diets significantly decreased P in manure and daily output of P. Daily N output was lowest in the reduced protein diet supplemented with phytase and pentosanase combination. The retention of DM, N and P was highest in the reduced protein diet supplemented with phytase and pentosanase combination. In conclusion, supplementation of phytase alone or in combination with pentosanase to reduced protein diets can decrease output of N and P. But the combination of the enzymes has no beneficial effects on the performance of broilers, especially those on wheat-soybean meal diet with reduced protein level.

Evaluation of the Efficacy of Crude Phytase Prerarations in Broiler Chickens

  • Paik, I.K.;Um, J.S.;Lee, S.J.;Lee, J.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.673-680
    • /
    • 2000
  • An experiment was conducted with day-old 300 commercial male broiler chicks (Arbor Acres$^{(R)}$) to evaluate the efficacy of crude phytase preparerations produced from a culture of Aspergillus ficcum. The experiment consisted of five dietary treatments; T1, com-soy control diet with 0.45% non-phytate phosphorus (NPP) for starter period and 0.35% NPP for grower period; T2, control - 0.1% NPP; T3, control 0.2% NPP; T4, T3+600 U of crude phytase (broth+cell); and T5, T3+600 U of crude phytase (broth). The body weight gain, feed intake, and feed/gain of chickens fed T1 diet was highest (p<0.01) among treatments. BW gain and feed intake of T4 and T5 were greater than those of T3 but were less than those of T1 and T2. T3 was highest in mortality among treatments. Decreasing the NPP level lowered availability of DM, crude ash, ether extract, crude fiber, Zn, and Fe but supplementation of crude phytase preparations improved the availability of these nutrients as well as those of Ca, P and Cu. Excretion of P and Cu significantly decreased as the NPP level in the diet decreased. Further reduction of P and Cu excretion and reduction of Ca, Mg and Fe excretion were achieved by supplementation of crude phytase preparations. The serum concentrations of Ca, P, Mg, Zn, Fe, and Cu were significantly increased by crude phytase supplementation. The weight and length of tibia, and contents of crude ash, Ca, P, Mg, and Zn were adversely affected by lowering NPP level but partially recovered by supplementation of crude phytase preparations. In conclusion, lowering NPP level in the broiler diet significantly depressed the performance. Supplementation of crude phytase preparations produced from Aspergillus ficuum could partially recover the depression.