• Title/Summary/Keyword: Physiology injury

Search Result 476, Processing Time 0.028 seconds

Protective Roles of Ginseng Saponin in Cardiac Ischemia and Reperfusion Injury

  • Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.33 no.4
    • /
    • pp.283-293
    • /
    • 2009
  • Ginsenosides, one of the most well-known traditional herbal medicines, are used frequently in Korea for the treatment of cardiovascular symptoms. The effects of ginseng saponin on ischemia-induced isolated rat heart were investigated through analyses of hemodynamic changes including perfusion pressure, aortic flow, coronary flow, and cardiac output. Isolated rat hearts were perfused and then subjected to 30 min of global ischemia followed by 60 min of reperfusion with modified Kreb's Henseleit solution. Myocardial contractile function was continuously recorded. Ginseng saponin administered before inducing ischemia significantly prevented decreases in perfusion pressure, aortic flow, coronary flow, and cardiac output. The ginseng saponin administered group significantly recovered all of the hemodynamic parameters, except heart rate, after ischemia-reperfusion (I/R) compared with ischemia control. The intracellular calcium ($[Ca^{2+}]_i$) content in rat neonatal cardiomyocytes was quantitatively determined. Administration of ginseng saponin significantly prevented $[Ca^{2+}]_i$ increase that had been induced by simulated I/R in vitro (p<0.01) in a dose-dependent manner, suggesting that the cardioprotection of ginseng saponin is mediated by the inhibition of $[Ca^{2+}]_i$ increase. Overall, we found that the administration of ginseng saponin has cardioprotective effects on the isolated rat heart after I/R injury. These results indicate that ginseng saponin has distinct cardioprotective effects in an I/R-induced rat heart.

PAF in Pulmonary Surfactant Contributes to Neutrophilic Oxidative Stress-Induced Acute Lung Injury of Rats Given LPS Intratracheally (흰쥐에서 내독소로 유도된 급성폐손상에서 surfactant내 PAF의 역할)

  • Lee, Young-Man
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1352-1358
    • /
    • 2012
  • In acute lung injury (ALI) by lipopolysaccharide (LPS), the underlying cause of infiltration and migration of neutrophils into the alveoli is considered to be from increased production of platelet-activating factor (PAF) in the pulmonary surfactant lining the alveolar lumen. In this study I partially confirmed this concept. LPS increased lung leak and the infiltration of neutrophils in the lung of rats given LPS intratracheally. The migration of neutrophils into the lung, which had caused oxidative stress, was also morphologically identified. I verified that the metabolism of the pulmonary surfactant was affected and that there was increased production of PAF in the pulmonary surfactant, both of which are considered to contribute to ALI by LPS in rats.

Histological Analysis Effect of 'Sexiang Shuhuo Jing' for after Skeletal Muscle in Rats (골격근 손상에 대한 '사향서활정(麝香舒活精)' 치료 효과에 대한 조직형태학적 관찰)

  • Kim, Jin-Hang;Song, Je-Ho
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1543-1547
    • /
    • 2006
  • The aim of this experiment was to observe and analysis clinical effect of the 'Sexiang shuhuo Jing' on histological change for 14days after skeletal muscle injury in rats. The gastrocnemius muscles of rats were damaged by electromechanical and serial cryosections of the damaged muscle were prepared at 1, 5, 10, 14 days after injury. Muscle sample of the both control and 'Sexiang Shuhuo Jing' treated group were prepared for histological analysis by optical microscope and electron microscopy. 'Sexiang Shuhuo Jing' treatment group's skeletal muscle recovery was much more faster than control group. After 5 day's 'Sexiang Shuhuo Jing' treatment group's basically recovery normal structure of muscle fiber. After 14 day's control group's damaged muscle were basically recovery structure of muscle fiber but still has some factor of pathological impression but in Sexiang Shuhuo Jing treatment group's can't be found that.

Pathophysiology and protective approaches of gut injury in critical illness

  • Jung, Chang Yeon;Bae, Jung Min
    • Journal of Yeungnam Medical Science
    • /
    • v.38 no.1
    • /
    • pp.27-33
    • /
    • 2021
  • The gut is a complex organ that has played an important role in digestion, absorption, endocrine functions, and immunity. The gut mucosal barriers consist of the immunologic barrier and nonimmunologic barrier. During critical illnesses, the gut is susceptible to injury due to the induction of intestinal hyperpermeability. Gut hyperpermeability and barrier dysfunction may lead to systemic inflammatory response syndrome. Additionally, gut microbiota are altered during critical illnesses. The etiology of such microbiome alterations in critical illnesses is multifactorial. The interaction or systemic host defense modulation between distant organs and the gut microbiome is increasingly studied in disease research. No treatment modality exists to significantly enhance the gut epithelial integrity, permeability, or mucus layer in critically ill patients. However, multiple helpful approaches including clinical and preclinical strategies exist. Enteral nutrition is associated with an increased mucosal barrier in animal and human studies. The trophic effects of enteral nutrition might help to maintain the intestinal physiology, prevent atrophy of gut villi, reduce intestinal permeability, and protect against ischemia-reperfusion injury. The microbiome approach such as the use of probiotics, fecal microbial transplantation, and selective decontamination of the digestive tract has been suggested. However, its evidence does not have a high quality. To promote rapid hypertrophy of the small bowel, various factors have been reported, including the epidermal growth factor, membrane permeant inhibitor of myosin light chain kinase, mucus surrogate, pharmacologic vagus nerve agonist, immune-enhancing diet, and glucagon-like peptide-2 as preclinical strategies. However, the evidence remains unclear.

Protective effects and mechanism of coenzyme Q10 and vitamin C on doxorubicin-induced gastric mucosal injury and effects of intestinal flora

  • Zhao, Xiaomeng;Feng, Xueke;Ye, Nan;Wei, Panpan;Zhang, Zhanwei;Lu, Wenyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.4
    • /
    • pp.261-272
    • /
    • 2021
  • Doxorubicin (Dox) is widely used to the treatment of cancer, however, it could cause damage to gastric mucosa. To investigate the protective effects and related mechanisms of coenzyme Q10 (CoQ10) and vitamin C (VC) on Dox-induced gastric mucosal injury, we presented the survey of the 4 groups of the rats with different conditions. The results showed Dox treatment significantly induced GES-1 apoptosis, but preconditioning in GES-1 cells with VC or CoQ10 significantly inhibited the Dox-induced decrease and other harm effects, including the expression and of IκKβ, IκBα, NF-κB/p65 and tumor necrosis factor (TNF-α) in GES-1 cells. Moreover, high-throughput sequencing results showed Dox treatment increased the number of harmful gut microbes, and CoQ10 and VC treatment inhibited this effect. CoQ10 and VC treatment inhibits Dox-induced gastric mucosal injury by inhibiting the activation of the IkKB/IκBα/NF-κB/p65/TNF-α pathway, promoting anti-inflammatory effects of gastric tissue and regulating the composition of the intestinal flora.

Anti-allodynic Efficacy of NMDA Antagonist Peptide and Noradrenaline Alone and in Combination in Rodent Neuropathic Pain Model

  • Nasirinezhad, Farinaz;Hosseini, Marjan;Salari, Sajad
    • The Korean Journal of Pain
    • /
    • v.28 no.2
    • /
    • pp.96-104
    • /
    • 2015
  • Background: The present experiment was conducted to identify the cooperative effect of serine histogranin (SHG) and noradrenaline in alleviating peripheral neuropathic pain. Methods: Chronic constriction injury of the right sciatic nerve was used to induce chronic neuropathic pain. For drug delivery, a PE10 tube was inserted into the subarachnoid space. Acetone drops and a $44^{\circ}C$ water bath were used to evaluate the cold and heat allodynia, respectively. Placing and grasping reflexes were used to assess the locomotor system. Results: SHG at 0.5 and $1{\mu}g$significantly (P < 0.05) decreased the thermal allodynia. The cold allodynia was also significantly reduced by intrathecal injections of 0.5 (P < 0.05) and $1{\mu}g$(P < 0.001) of SHG. $1{\mu}g$of noradrenaline, but not $0.5{\mu}g$, significantly alleviated the cold (P < 0.01) and thermal (P < 0.05) allodynia. The ameliorating effect of noradrenaline or SHG disappeared when the two compounds were administrated in equal concentrations. A significant difference (P < 0.01 in the acetone and P < 0.05 in the heat) was observed in the groups under equal doses of the two compounds, with a lower effectiveness of the combination therapy. Conclusions: Our findings suggest that the simultaneous administrations of noradrenaline and SHG do not result in synergistic analgesia, and combination therapy may not be a good approach to the treatment of chronic neuropathic pain syndrome.

Determinant Role of the Severity of Hypoxia in the Induction of Reoxygenation Injury in Cat Lung (고양이 허파에서 산소재유입 손상을 결정하는 저산소증의 정도)

  • Nam, Hyun-Jung;Kim, Yoo-Kyung;Hong, Seung-Kil;Na, Heung-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.775-781
    • /
    • 1997
  • Although reoxygenation is the best way to salvage hypoxic tissues, reduced oxygen species (ROS) generated during reoxygenation are blown to cause further tissue injuries and the induction of heat shock proteins (HSPs). The present study was undertaken to determine any causal relationship between the severity of hypoxia and the opposite outcomes, either beneficial or detrimental, of the subsequent reoxygenation by measuring the HSP72. To this aim, one group (6 male cats, $2.5{\sim}3.5\;kg$) was subjected to a 5-min episode of hypoventilation (H, ventilation rate: 5/min) for the induction of slight hypoxia and the other group (6 male cats, $2.4{\sim}3.7\;kg$) was subjected to a 5-min episode of apnea (A) for severe hypoxia. Each 3 animals from both groups received a 10-min episode of ventilation with $(95%\;O_2\;(0)$, whereas the remainder did not. After these procedures, all animals were allowed to be ventilated within physiological range for 1, 4, or 8 hours (1H, 1HO, 4H, 4HO, 8H, 8HO, 1A, 1AO, 4A, 4AO, 8A and 8AO groups). Control animals did not receive any manipulation. The arterial blood $pCO_2$ was significantly higher just after apnea than hypoventilation, while $pCO_2$ and pH were significantly lower just after apnea than hypoventilation. Western blot analysis revealed that the magnitude of HSP72 synthesis is larger in 1H, 4H and 8H groups than in 1HO, 4H and 8HO groups, respectively. In contrast, 1AO, 4AO and 8AO groups more induced HSP72 than 1A, 4A and 8A groups, respectively. These results suggest that the reoxygenation is beneficial after slight hypoxia but detrimental after severe hypoxia.

  • PDF

Effects of NO Synthase Inhibitor on Responsiveness of Dorsal Horn Neurons in Neuropathic Pain Animal Model (신경병성 통증모델쥐에서 산화질소합성효소 억제제가 척수후각세포의 활성도에 미치는 영향)

  • Leem, Joong-Woo;Gwak, Young-Seob;Chung, Seung-Soo;Lee, Kyu-Rae;Yoon, Duck-Mi;Nam, Taick-Sang
    • The Korean Journal of Pain
    • /
    • v.13 no.1
    • /
    • pp.19-30
    • /
    • 2000
  • Background: Partial nerve injury to a peripheral nerve may induce the development of neuropathic pain which is characterized by symptoms such as spontaneous burning pain, allodynia and hyperalgesia. Though underlying mechanism has not fully understood, sensitization of dorsal horn neurons may contribute to generate such symptoms. Nitric oxide acts as an inter- and intracellular messenger in the nervous system and is produced from L-arginine by nitric oxide synthase (NOS). Evidence is accumulating which indicate that nitric oxide may mediate nociceptive information transmission. Recently, it has been reported that NOS inhibitor suppresses neuropathic pain behavior in an neuropathic pain animal model. This study was conducted to determine whether nitric oxide could be involved in the sensitization of dorsal horn neurons in neuropathic animal model. Methods: Neuropathic animal model was made by tightly ligating the left L5 and L6 spinal nerves and we examined the effects of iontophoretically applied NOS inhibitor (L-NAME) on the dorsal horn neuron's responses to mechanical stimuli within the receptive fields. Results: In normal animals, NOS inhibitor (L-NAME) specifically suppressed the responses to the noxious mechanical stimuli. In neuropathic animals, the dorsal horn neuron's responses to mechanical stimuli were enhanced and NOS inhibitor suppressed the dorsal horn neuron's enhanced responses to non-noxious stimuli as well as those to noxious ones. Conclusions: These results suggest that nitric oxide may mediate nociceptive transmission in normal animal and also mediate sensitization of dorsal horn neurons in neuropathic pain state.

  • PDF

Korean Red Ginseng Protects Oxidative Injury Caused by Lead Poisoning

  • Park, Myoung-Soo;Cho, Eun-Jung;Lee, Sang-Ki;Lee, Eun-Ji;Lee, Dae-Sik;Lee, Kwon-Ho;Jeon, Byeong-Hwa
    • Journal of Ginseng Research
    • /
    • v.34 no.2
    • /
    • pp.132-137
    • /
    • 2010
  • Lead (Pb) is a metal that is generally considered to be toxic to the cardiovascular system. Pb-exposed animals display the evidence of increased oxidative stress and hypertension. The current study was designed to examine whether Korean red ginseng (KRG) has protective effects against Pb-induced hypertension and oxidative stress in Pb-exposed rats. Male Sprague-Dawley rats were randomly assigned to Pb exposure or control groups. KRG was administered in drinking water at a concentration of 100 mg/kg/day; the control group received plain drinking water. Animals in the Pb-exposed groups were provided with drinking water containing 100 ppm Pb acetate for 12 weeks. Blood pressure, plasma glutathione, blood Pb concentration, and hematologic data, such as red blood cell quantity, were determined. Pb poisoning was assessed by measuring the blood Pb concentration. Pb exposure (100 ppm) for 12 weeks resulted in a marked rise in systolic blood pressure and blood Pb concentration, as well as a significant reduction in plasma glutathione levels and red blood cell quantity. Other measurements, such as heart rate, body weight, and white blood cell quantity, were unchanged. Treatment with KRG significantly lowered blood pressure, raised plasma glutathione and increased red blood cell numbers in Pb-exposed animals; it also had no effect on heart rate, body weight, or white blood cell quantity. However, the elevated blood Pb concentration was not reduced by treatment with KRG (100 mg/kg). Taken together, these data indicate that treatment with KRG in Pb-exposed animals can reduce oxidative stress and lower blood pressure, suggesting that KRG might be protective against Pb-exposed hypertension and oxidative stress.

Glycine- and GABA-mimetic Actions of Shilajit on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Mice

  • Yin, Hua;Yang, Eun-Ju;Park, Soo-Joung;Han, Seong-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.5
    • /
    • pp.285-289
    • /
    • 2011
  • Shilajit, a medicine herb commonly used in Ayurveda, has been reported to contain at least 85 minerals in ionic form that act on a variety of chemical, biological, and physical stressors. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) are involved in orofacial nociceptive processing. Shilajit has been reported to be an injury and muscular pain reliever but there have been few functional studies of the effect of Shilajit on the SG neurons of the Vc. Therefore, whole cell and gramicidin-perfotrated patch clamp studies were performed to examine the action mechanism of Shilajit on the SG neurons of Vc from mouse brainstem slices. In the whole cell patch clamp mode, Shilajit induced short-lived and repeatable inward currents under the condition of a high chloride pipette solution on all the SG neurons tested. The Shilajit-induced inward currents were concentration dependent and maintained in the presence of tetrodotoxin (TTX), a voltage gated $Na^+$ channel blocker, CNQX, a non-NMDA glutamate receptor antagonist, and AP5, an NMDA receptor antagonist. The Shilajit-induced responses were partially suppressed by picrotoxin, a $GABA_A$ receptor antagonist, and totally blocked in the presence of strychnine, a glycine receptor antagonist, however not affected by mecamylamine hydrochloride (MCH), a nicotinic acetylcholine receptor antagonist. Under the potassium gluconate pipette solution at holding potential 0 mV, Shilajit induced repeatable outward current. These results show that Shilajit has inhibitory effects on the SG neurons of Vc through chloride ion channels by activation of the glycine receptor and $GABA_A$ receptor, indicating that Shilajit contains sedating ingredients for the central nervous system. These results also suggest that Shilajit may be a potential target for modulating orofacial pain processing.