• Title/Summary/Keyword: Physiological noise

Search Result 91, Processing Time 0.029 seconds

Time delay estimation algorithm for measurement of muscle fiber conduction velocity (근섬유 전도 속도 측정을 위한 시지연 추정 알고리즘)

  • Jung, Jung-Gyun;Lee, Jin;Lee, Young-Seok;Kim, Deok-Young;Kim, Sung-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1635-1638
    • /
    • 1997
  • A measurement of conduction veloctiy of the action potentials along the muscle fibres has been applied to various diagnosis. When we measure muscle fiber conduction velocity, it occurs that not only change of conduction velocity but alos inclusion of mipulse component by physiological and experimental reason. So, robuster time delay estimation algorithm than general methods[1] is needed to find correct time delay form these signals. In this paper we, propose new time delay estimation algorithms, robust in impulsive noise, by using characteristic of .alpha.-stable distribution whcih defines impulsive noise well. Then we apply proposed algorthms to measure muscle fiber conduction velocity and compare them with other studies.

  • PDF

A Novel Method to Estimate Heart Rate from ECG

  • Leu, Jenq-Shiun;Lo, Pei-Chen
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.441-448
    • /
    • 2007
  • Heart rate variability (HRV) in electrocardiogram (ECG) is an important index for understanding the health status of heart and the autonomic nervous system. Most HRV analysis approaches are based on the proper heart rate (HR) data. Estimation of heart rate is thus a key process in the HRV study. In this paper, we report an innovative method to estimate the heart rate. This method is mainly based on the concept of periodicity transform (PT) and instantaneous period (IP) estimate. The method presented is accordingly called the "PT-IP method." It does not require ECG R-wave detection and thus possesses robust noise-immune capability. While the noise contamination, ECG time-varying morphology, and subjects' physiological variations make the R-wave detection a difficult task, this method can help us effectively estimate HR for medical research and clinical diagnosis. The results of estimating HR from empirical ECG data verify the efficacy and reliability of the proposed method.

Harmfulness of infrasound and wind turbine noise managements (초저주파음의 유해성 및 풍력 발전 소음 관리에 대한 고찰)

  • Kim, Seong-Chan;Choi, Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.1
    • /
    • pp.73-83
    • /
    • 2021
  • Wind power energy harvesting has a big potential as a future clean energy resource, but accompanies infrasonic noises. The infrasound is difficult to shield and can induce various negative physiological effects. In this study, the Wind Turbine Syndrome (WTS) caused by the infrasonic noises are introduced, and the technical aspects for the measurement and management of the infrasonic noises from wind power plants are discussed.

Influence of Prenatal Noise and Music on the Expressions of c-Fos and Nitric Oxide Synthase in the Hippocampus of Rat Pups

  • Kim, Su-Mi;Lee, Sam-Jun;Kim, Hong;Baek, Seung-Soo;Sung, Yun-Hee;Lee, Jin-Woo;Kim, Young-Sick;Kim, Sung-Eun;Shin, Mal-Soon;Kim, Chang-Ju;Lee, Choong-Yeol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.5
    • /
    • pp.1291-1296
    • /
    • 2007
  • The expressions of c-Fos and nitric oxide synthase (NOS) represent neuronal activity and play' a crucial role in the shaping of the development of brain. During the late pregnancy, stresses may influence neuronal activity of prenatal rats. In the present study, the effects of prenatal noise and music on the expressions of c-Fos and NOS in the hippocampus of rat pups were investigated. Exposure to the noise during pregnancy decreased c-Fos and NOS expressions in the hippocampus of rat pups, whereas exposure to music during pregnancy increased c-Fos and NOS expressions in the hippocampus of rat pups. The present results show that prenatal music stimulation may increase neuronal activity of rat offspring, whereas exposure to noise during pregnancy may reduce the neuronal activity of offspring. The present study suggests that prenatal stimuli including noise and music could affect the fetal brain development.

Evaluation on the stress using HRV according to elapsed time of MRI noise (HRV를 이용한 자기공명영상 소음의 시간 변화에 따른 스트레스 평가)

  • Ye, Soo-Young;Kim, Dong-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.2
    • /
    • pp.50-55
    • /
    • 2015
  • The noise of MRI shooting is 100dB loud and has an intensive psychological and physiological influences on the human body. ECG signals were measured by experimental methods, while wearing earplugs for 15 minutes in the stable state. Then the ECG signals were measured for 30 minutes while listening to about 100dB of sound in a MRI equipment. In this study, the heart rate variability of men and women was analyzed according to the MRI noise stress level through the frequency analysis. As the MRI noise level is about 100dB, HRV analysis resulted in an imbalance between the sympathetic and parasympathetic. During the period from the resting state up to 10 minutes, the maximum stress state was shown. This study will encourage MRI workers to take interests in hearing protection for the patient and to make objective indicators about MRI noises.

A Research for Removing ECG Noise and Transmitting 1-channel of 3-axis Accelerometer Signal in Wearable Sensor Node Based on WSN (무선센서네트워크 기반의 웨어러블 센서노드에서 3축 가속도 신호의 단채널 전송과 심전도 노이즈 제거에 대한 연구)

  • Lee, Seung-Chul;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.137-144
    • /
    • 2011
  • Wireless sensor network(WSN) has the potential to greatly effect many aspects of u-healthcare. By outfitting the potential with WSN, wearable sensor node can collects real-time data on physiological status and transmits through base station to server PC. However, there is a significant gap between WSN and healthcare. WSN has the limited resource about computing capability and data transmission according to bio-sensor sampling rates and channels to apply healthcare system. If a wearable node transmits ECG and accelerometer data of 4 channel sampled at 100 Hz, these data may occur high loss packets for transmitting human activity and ECG to server PC. Therefore current wearable sensor nodes have to solve above mentioned problems to be suited for u-healthcare system. Most WSN based activity and ECG monitoring system have been implemented some algorithms which are applied for signal vector magnitude(SVM) algorithm and ECG noise algorithm in server PC. In this paper, A wearable sensor node using integrated ECG and 3-axial accelerometer based on wireless sensor network is designed and developed. It can form multi-hop network with relay nodes to extend network range in WSN. Our wearable nodes can transmit 1-channel activity data processed activity classification data vector using SVM algorithm to 3-channel accelerometer data. ECG signals are contaminated with high frequency noise such as power line interference and muscle artifact. Our wearable sensor nodes can remove high frequency noise to clear original ECG signal for healthcare monitoring.

Gradient Noise Reduction in EEG Acquired During MRI Scan (MRI와 동시 측정한 뇌전도 신호에서 경사자계 유발잡음의 제거)

  • Lee H.R.;Lee H.N.;Han J.Y.;Park T.S.;Lee S.Y.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • Purpose : Information about electrical activity inside the brain during fMRl scans is very useful in monitoring physiological function of the patient or locating the spatial position of the activated region in the brain. However, many additional noises appear in the EEG signal acquired during the MRI scan. Gradient induced noise is the biggest one among the noises. In this work, we propose a gradient noise reduction method using the independent component analysis (ICA) method. Materials and Methods : We used a 29-channel MR-compatible EEG measurement system and a 3.0 Tesla MRI system. We measured EEG signals on a subject lying inside the magnet during EPI scans. We selectively removed the gradient noise from the measured EEG signal using the ICA method. We compared the results with the ones obtained with conventional averaging method and PCA method. Results : All the noise reduction methods including the averaging and PCA methods were effective in removing the noise in some extent. However, the proposed ICA method was found to be superior to the other methods. Conclusion : Gradient noise in EEG signals acquired during fMRI scans can be effectively reduced by the ICA method. The noise-reduced EEG signal can be used in fMRI studies of epileptic patients or combinatory studies of fMRI and EEG.

  • PDF

Estimation Method for Brain Activities are Influenced by Blood Pulsation Effect (Blood Pulsation의 효과가 뇌 활성화에 미치는 영향을 알아보는 방법)

  • Lee, W.H.;Ku, J.H.;Lee, H.R.;Han, K.W.;Park, J.S.;Kim, J.J.;Yoon, K.J.;Kim, I.Y.;Kim, S.I.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.338-343
    • /
    • 2007
  • BOLD T2*-weighted MR images reflects cortical blood flow and oxygenation alterations. fMRI study relies on the detection of localized changes in BOLD signal intensity. Since fMRI measures the very small modulations in BOLD signal intensity that occur during changes in brain activity, it is also very sensitive to small signal intensity variations caused by physiologic noise during the scan. Due to the complexity of movement of various organs associated with heart beat, it is important to reduce cardiac related noise rather than other physiological noise which could be required with relatively simple method. Therefore, a number of methods have been developed for the estimation and reduction of cardiac noise in fMRI study. But, each method has limitation. In this study, we proposed a new estimation method for brain activities influenced by blood pulsation effect using regression analysis with blood pulsation signal and the correspond slice of fMRI. We could find out that the right anterior cingulate cortex and right olfactory cortex and left olfactory cortex were largely influenced by blood pulsation effect for new method. These observed areas are mostly on the structure of anterior cerebral artery in the brain. That is convinced with that our method would be valid and our new method is easier to apply in practice and reduce computational burden than the retrospective method.

The Evaluation of Optimized Inversion-Recovery Fat-Suppression Techniques for T2-Weighted Abdominal MR Imaging : Preliminary report (복부의 T2강조 영상에서 지방소거기법의최적의 평가)

  • Lee, Da-Hee;Goo, Eun-Hoe
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.1
    • /
    • pp.31-35
    • /
    • 2012
  • To test the real image quality of a spectral attenuated inversion-recovery (SPAIR) fat-suppression (FS) techniquein clinical abdominal MRI by comparison to turbo spin echo inversion-recovery (TSEIR) fat-suppression (FS) technique. 3.0T MRI studies of the abdomen were performed in 30 patients with liver lesions (hemangiomas n: 15; HCC n: 15). T2W sequences were acquired using SPAIR TSEIR. Measurements included retroperitoneal and mesenteric fat signal-to-noise (SNR) to evaluate FS; liver lesion contrast-to-noise (CNR) to evaluate bulk water signal recovery effects; and bowel wall delineation to evaluate susceptibility and physiological motion effects. SPAIR-TSEIR images produce significantly improved FS and liver lesion CNR. The mean SNR of the retroperitoneal and mesenteric fat for SPAIR were 20.5, 10.2 and TSEIR were 43.2, 24.1 (P<0.05). SPAIR-TSEIR images produced higher CNR for both hemangiomas CNR 164.88 vs 126.83 (P<0.05) and metastasis CNR 75.27 vs 53.19 (P<0.05). Bowel wall visualization was significantly improved using in both SPAIR-TSEIR (P< 0.05). The real image quality of SPAIR was better than over conventional TSEIR FS on clinical abdominal MRI scans.

  • PDF

Voice quality of normal elderly people after a 3oz water-swallow test: An acoustic analysis (3온스 물 삼킴검사 이후 정상 노년층의 음질 변화: 음향학적 분석)

  • Lee, Sol Hee;Choi, Hong-Shik;Choi, Seong-Hee;Kim, HyangHee
    • Phonetics and Speech Sciences
    • /
    • v.10 no.2
    • /
    • pp.69-76
    • /
    • 2018
  • The elderly are at increased risk of developing dysphagia due to aging and illnesses. The aim of the current study was to analyze, via an acoustic study, the change in the voice quality of normal elderly people after a 3oz water-swallow test. Subjects included a group of 60 normal elderly people (age: $mean{\pm}SD=76.9{\pm}6.66$) and 60 healthy young adults (age: $mean{\pm}SD=25.1{\pm}2.36$). Every participant produced a five-second /a/ phonation pre- and post-swallowing, and the fractioned two-second sections were analyzed using the MDVP (multi dimensional voice program) analysis. The elderly group demonstrated a post-swallowing increase in the following related acoustic parameters: fundamental frequency, fundamental frequency variation, amplitude-variation, and noise in both two-second sections. However, the younger group showed an increase only in frequency related acoustic parameters (i.e., STD ) in the first two-second section. The significant changes in values in the post-swallowing parameters might indicate temporary irregularities in pitch and amplitude along with higher amounts of noise in the voice. The results could be attributed to water residues in the vocal fold and vocal tract, as well as a deterioration of the motor and sensory functions caused by anatomical and physiological changes that result from aging.