• 제목/요약/키워드: Physiological monitoring

검색결과 220건 처리시간 0.025초

가열과 운동에 의한 생체조직내의 생리적 변화에 따른 광학적 특성의 변화에 관한 연구 (The Effects of Physiological Heating and Exercise on the Optical Properties of Biological Tissue.)

  • 임현수;허웅
    • 대한의용생체공학회:의공학회지
    • /
    • 제14권1호
    • /
    • pp.81-88
    • /
    • 1993
  • This paper is the study of the reflectance of light from biological tissue for red and Infrared wavelengths and relates the acquired reflectance data to expected physiological changes within the skin and muscle layers associated with heat and exercise. The instrument was disigned to collect data from the calf muscle in human subjects with probe located at the surface of skin. Rapid data acquisition method allowed monitoring of rapid changes in reflecttance due to a stimulus. This study demonstrates that changes in O2 saturation and blood fractional volume expected within the dermis and muscle layers were asserted by examining the slopes of the plotted index for heat and exercise. The results presented in thls study support the claim that reflectance can separately discriminate between changes of blood volume and oxygenation in muscle and in skin. The data demonstrate the ability to measure consistent changes In tissue optical properties during exercise and heat.

  • PDF

웨이블릿 알고리즘을 적용한 휴대용 텔레미트리 시스템 (Implementation of a portable telemetry system based on wavelet transform.)

  • 박차훈;서희돈
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(5)
    • /
    • pp.113-116
    • /
    • 2000
  • In this paper presents the portable wireless ECG data detection and diagnosis system based on discreet wavelet transform. An algorithm based on wavelet transform suitable for real time implementation has been developed in order to detect ECG characteristics. In particular, QRS complex, S and T waves may be distinguished form noise, baseline drift or artifacts. Proposed telemetry system that a transmitting media using radio frequency(RF) for the middle range measurement of the physiological signals and receiving media using optical for electromagnetic interference problem. A standard hi-directional serial communication interface between the telemetry system and a personal computer or laptop, allows read-time controlling, diagnosing and monitoring of system. A portable telemetry system within a size. of 65${\times}$125${\times}$45mm consists of three parts: a digital signal processing part for physiological signal detect or diagnose, RF transmitter for data transfer and a optical receiver for command receive. Advantages of proposed telemetry system is wireless middle range(50m) FM transmission, reduce electromagnetic interference to a minimum. which enables a comfortable diagnosis system at home.

  • PDF

Thermal imaging and computer vision technologies for the enhancement of pig husbandry: a review

  • Md Nasim Reza;Md Razob Ali;Samsuzzaman;Md Shaha Nur Kabir;Md Rejaul Karim;Shahriar Ahmed;Hyunjin Kyoung;Gookhwan Kim;Sun-Ok Chung
    • Journal of Animal Science and Technology
    • /
    • 제66권1호
    • /
    • pp.31-56
    • /
    • 2024
  • Pig farming, a vital industry, necessitates proactive measures for early disease detection and crush symptom monitoring to ensure optimum pig health and safety. This review explores advanced thermal sensing technologies and computer vision-based thermal imaging techniques employed for pig disease and piglet crush symptom monitoring on pig farms. Infrared thermography (IRT) is a non-invasive and efficient technology for measuring pig body temperature, providing advantages such as non-destructive, long-distance, and high-sensitivity measurements. Unlike traditional methods, IRT offers a quick and labor-saving approach to acquiring physiological data impacted by environmental temperature, crucial for understanding pig body physiology and metabolism. IRT aids in early disease detection, respiratory health monitoring, and evaluating vaccination effectiveness. Challenges include body surface emissivity variations affecting measurement accuracy. Thermal imaging and deep learning algorithms are used for pig behavior recognition, with the dorsal plane effective for stress detection. Remote health monitoring through thermal imaging, deep learning, and wearable devices facilitates non-invasive assessment of pig health, minimizing medication use. Integration of advanced sensors, thermal imaging, and deep learning shows potential for disease detection and improvement in pig farming, but challenges and ethical considerations must be addressed for successful implementation. This review summarizes the state-of-the-art technologies used in the pig farming industry, including computer vision algorithms such as object detection, image segmentation, and deep learning techniques. It also discusses the benefits and limitations of IRT technology, providing an overview of the current research field. This study provides valuable insights for researchers and farmers regarding IRT application in pig production, highlighting notable approaches and the latest research findings in this field.

Automatic Detection of Anomalies in Blood Glucose Using a Machine Learning Approach

  • Zhu, Ying
    • Journal of Communications and Networks
    • /
    • 제13권2호
    • /
    • pp.125-131
    • /
    • 2011
  • Rapid strides are being made to bring to reality the technology of wearable sensors for monitoring patients' physiological data.We study the problem of automatically detecting anomalies in themeasured blood glucose levels. The normal daily measurements of the patient are used to train a hidden Markov model (HMM). The structure of the HMM-its states and output symbols-are selected to accurately model the typical transitions in blood glucose levels throughout a 24-hour period. The learning of the HMM is done using historic data of normal measurements. The HMM can then be used to detect anomalies in blood glucose levels being measured, if the inferred likelihood of the observed data is low in the world described by the HMM. Our simulation results show that our technique is accurate in detecting anomalies in glucose levels and is robust (i.e., no false positives) in the presence of reasonable changes in the patient's daily routine.

만성두통 환자에 대한 인지행동치료경험 (Experience of Cognitive-Behavioral Treatment for Patients with Chronic Headache)

  • 고경봉
    • 정신신체의학
    • /
    • 제4권1호
    • /
    • pp.85-90
    • /
    • 1996
  • Cognitive-behavioral approach to two cases with chronic headache was presented. Cognitive-behavioral interventions focus on indirectly altering symptom-related physiological activity by changing the way patients cope with headache-eliciting stressors. This treatment focuses directly on the patients' cognitive and behavioral changes. Cognitive-behavioral treatment can be divided into three phases Education, self-monitoring, and problem-solving or coping-skills training. Literature reviews on the follow-up evaluation of therapeutic effectiveness revealed that cognitive-behavioral treatment is effective in the management of chronic headache.

  • PDF

공기 매트리스와 디지털 신호처리를 이용한 홈헬스케어용 무구속 수면 모니터링 시스템 (The Unconstrained Sleep Monitoring System for Home Healthcare using Air Mattress and Digital Signal Processing)

  • 지영준;박광석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.493-496
    • /
    • 2005
  • For home healthcare, the unconstrained measurement of physiological signal is highly required to avoid the inconvenience of users. The recording and analysis of the fundamental parameters during sleep like respiration and heart beat provide valuable information on his/her healthcare. Using the air mattress sensor system, the respiration and heart beat movements can be measured without any harness or sensor on the subject's body. The differential measurement technique between two air cells is adopted to enhance the sensitivity. The balancing tube between two air cells is used to increase the robustness against postural changes during the measurement period. The meaningful frequency range could be selected by the pneumatic filter with balancing tube. ECG (Electrocardiography) and respiration sensor (plethysmography) were measured for comparison with the signal from air mattress. To extract the heart beat information from air pressure sensor, digital signal processing technique was used. The accuracy for breathing interval and heart beat monitoring was acceptable. It shows the potentials of air mattress sensor system to be the unconstrained home sleep monitoring system.

  • PDF

An Overview of Remote Sensing of Chlorophyll Fluorescence

  • Xing, Xiao-Gang;Zhao, Dong-Zhi;Liu, Yu-Guang;Yang, Jian-Hong;Xiu, Peng;Wang, Lin
    • Ocean Science Journal
    • /
    • 제42권1호
    • /
    • pp.49-59
    • /
    • 2007
  • Besides empirical algorithms with the blue-green ratio, the algorithms based on fluorescence are also important and valid methods for retrieving chlorophyll-a concentration in the ocean waters, especially for Case II waters and the sea with algal blooming. This study reviews the history of initial cognitions, investigations and detailed approaches towards chlorophyll fluorescence, and then introduces the biological mechanism of fluorescence remote sensing and main spectral characteristics such as the positive correlation between fluorescence and chlorophyll concentration, the red shift phenomena. Meanwhile, there exist many influence factors that increase complexity of fluorescence remote sensing, such as fluorescence quantum yield, physiological status of various algae, substances with related optical property in the ocean, atmospheric absorption etc. Based on these cognitions, scientists have found two ways to calculate the amount of fluorescence detected by ocean color sensors: fluorescence line height and reflectance ratio. These two ways are currently the foundation for retrieval of chlorophyll-a concentration in the ocean. As the in-situ measurements and synchronous satellite data are continuously being accumulated, the fluorescence remote sensing of chlorophyll-a concentration in Case II waters should be recognized more thoroughly and new algorithms could be expected.

Data-driven Adaptive Safety Monitoring Using Virtual Subjects in Medical Cyber-Physical Systems: A Glucose Control Case Study

  • Chen, Sanjian;Sokolsky, Oleg;Weimer, James;Lee, Insup
    • Journal of Computing Science and Engineering
    • /
    • 제10권3호
    • /
    • pp.75-84
    • /
    • 2016
  • Medical cyber-physical systems (MCPS) integrate sensors, actuators, and software to improve patient safety and quality of healthcare. These systems introduce major challenges to safety analysis because the patient's physiology is complex, nonlinear, unobservable, and uncertain. To cope with the challenge that unidentified physiological parameters may exhibit short-term variances in certain clinical scenarios, we propose a novel run-time predictive safety monitoring technique that leverages a maximal model coupled with online training of a computational virtual subject (CVS) set. The proposed monitor predicts safety-critical events at run-time using only clinically available measurements. We apply the technique to a surgical glucose control case study. Evaluation on retrospective real clinical data shows that the algorithm achieves 96% sensitivity with a low average false alarm rate of 0.5 false alarm per surgery.

사물인터넷 기반의 다중채널 생체신호 측정 (Acquisition of Multi-channel Biomedical Signals Based on Internet of Things)

  • 김정환;정겨운;이준우;김경섭
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1252-1256
    • /
    • 2016
  • Internet of Things(IoT)-devices are now expanding inter-connecting networking technologies to invent healthcare monitoring system especially for assessing physiological conditions of the chronically-ill patients those with cardiovascular diseases. Hence, IoT system is expected to be utilized for home healthcare by dedicating the original usage of IoT devices to collect the biomedical data such as electrocardiogram(ECG) and photoplethysmography(PPG) signal. The aim of this work is to implement health monitoring system by integrating IoT devices with Raspberry-pi components to measure and analyze ECG and the multi-channel PPG signals. The acquired data and fiducial features from our system can be transmitted to mobile devices via wireless networking technology to support the concept of tele-monitoring services based on IoT devices.

다환방향족탄화수소 (PAHs) 에 노출된 굴, Crassostrea gigas의 생리 반응 변화 (The change of the physiological response of the Crassostrea gigas exposed to PAHs)

  • 최은희;최중기;이원영;윤주현;심나영;김수경;임현정
    • 한국패류학회지
    • /
    • 제30권3호
    • /
    • pp.169-175
    • /
    • 2014
  • PAHs (Polycyclic Aromatic Hydrocarbons: PAHs) is the hydrophobic inorganic material composed of carbon and hydrogen that is easily adsorbed biological organisms in the ocean. Bivalves is the indicator of environment monitoring because of reflect growth, physiological response of bivalve followed their habitat environment. The aim of research is understand the change of oysters (Crassostrea gigas) physiological response under exposed PAHs concentration for control, 1, 10 and $100{\mu}g/L$. We investigated induced immune change response for oyster hemocyte and effect of tissue RNA/DNA ratio for mantle, gill and adductor muscle individually. As a result of experiment change of immune response the oyster hemocyte when exposed PAHs showed that viability and adhesion is no significant difference (ANOVA test, p < 0.05). However phagocytosis decreased under the over $10{\mu}g/L$ of PAHs concentration and ROS increased with the increase of PAHs concentration. The change of RNA/DNA ratio is R/D ratio decreased with the increase of PAH concentration in adductor muscle. However gill and mantle showed no change of R/D ratio with PAHs concentration. The oysters when exposed inorganic pollutant that decreased of physiological condition and damaged protein synthesis of adductor muscle.