• Title/Summary/Keyword: Physiological Signals

Search Result 263, Processing Time 0.024 seconds

Estimation of Tension Status for Alcohol Dependent Patients using Biofeedback Training and Fuzzy Theory (피지이론과 바이오피드백을 이용한 주정중독증 환자의 긴장도 평가)

  • 성홍모;시재우;윤영로;윤형로;박진한;신정호
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.191-198
    • /
    • 1999
  • Biofeedback training is one of physiological self control methods for patients who has psychological problem and rehabilitational problem. It has been used to control blood pressure, heart rate, peripheral temperature, respiration, electromyography (ENG), and other biological signals-ENG, respiration, heat rate, peripheral temperature, skin conductance level-was developed in house. We applied this system to alcohol dependent patients to perform biofeedback training. In this experiment, the relaxation biofeedback training for alcohol dependent patient was carried out and the tension state for the change of biological signals were estimated using the fuzzy theory after relaxation biofeenback training. Eight alcohol dependent patients were agreed to participate in this experiment. Result showed that 1) the tension degree of patients were higher than the tension degree of normal subject. 2) The tension degree of patients were decreased as the training numbers were increased.

  • PDF

The Study of Bfa1pE438K Suggests that Bfa1 Control the MitoticExit Network in Different Mechanisms Depending on DifferentCheckpoint-activating Signals

  • Kim, Junwon;Song, Kiwon
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.251-260
    • /
    • 2006
  • During mitosis, genomic integrity is maintained by the proper coordination of anaphase entry and mitotic exit via mitotic checkpoints. In budding yeast, mitotic exit is controlled by a regulatory cascade called the mitotic exit network (MEN). The MEN is regulated by a small GTPase, Tem1p, which in turn is controlled by a two-component GAP, Bfa1p-Bub2p. Recent results suggested that phosphorylation of Bfa1p by the polorelated kinase Cdc5p is also required for triggering mitotic exit, since it decreases the GAP activity of Bfa1p-Bub2p. However, the dispensability of GEF Lte1p for mitotic exit has raised questions about regulation of the MEN by the GTPase activity of Tem1p. We isolated a Bfa1p mutant, $Bfa1p^{E438K}$, whose overexpression only partially induced anaphase arrest. The molecular and biochemical functions of $Bfa1p^{E438K}$ are similar to those of wild type Bfa1p, except for decreased GAP activity. Interestingly, in $BFA1^{E438K}$ cells, the MEN could be regulated with nearly wild type kinetics at physiological temperature, as well as in response to various checkpoint-activating signals, but the cells were more sensitive to spindle damage than wild type. These results suggest that the GAP activity of Bfa1p-Bub2p is responsible for the mitotic arrest caused by spindle damage and Bfa1p overproduction. In addition, the viability of cdc5-2 ${\Delta}bfa1 $ cells was not reduced by $BFA1^{E438K}$, suggesting that Cdc5p also regulates Bfa1p to activate mitotic exit by other mechanism(s), besides phosphorylation.

Force Transmission in Cellular Adherens Junction Visualized by Engineered FRET Alpha-catenin Sensor (형광공명에너지전이 알파카테닌 센서를 활용한 세포 부착접합부에서의 힘 전달 이미징)

  • Jang, Yoon-Kwan;Suh, Jung-Soo;Suk, Myungeun;Kim, Tae-Jin
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.366-372
    • /
    • 2021
  • Cadherin-Catenin complex is thought to play an essential role in the transmission of force at adherens junction. Due to the lack of proper tools to visualize and detect mechanical force signals, the underlying mechanism by which the cadherin-catenin complex regulates force transmission at intercellular junctions remains elusive. In this study, we visualize cadherin-mediated force transmission using an engineered α-Catenin sensor based on fluorescence resonance energy transfer. Our results reveal that α-catenin is a key force transducer in cadherin-mediated mechanotransduction at cell-cell junctions. Thus, our finding will provide important insights for studying the effects of chemical and physical signals on cell-cell communication and the relationship between physiological and pathological phenomena.

Sleep Monitoring by Contactless in daily life based on Mobile Sensing (모바일 센싱 기반의 일상생활에서 비접촉에 의한 수면 모니터링)

  • Seo, Jung-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.491-498
    • /
    • 2022
  • In our daily life, quality of sleeping is closely related to happiness index. Whether or not people perceive sleep disturbance as a chronic disease, people complain of many difficulties, and in their daily life, they often experience difficulty breathing during sleep. It is very important to automatically recognize breathing-related disorders during a sleep, but it is very difficult in reality. To solve this problem, this paper proposes a mobile-based non-contact sleeping monitoring for health management at home. Respiratory signals during the sleep are collected by using the sound sensor of the smartphone, the characteristics of the signals are extracted, and the frequency, amplitude, respiration rate, and pattern of respiration are analyzed. Although mobile health does not solve all problems, it aims at early detection and continuous management of individual health conditions, and shows the possibility of monitoring physiological data such as respiration during the sleep without additional sensors with a smartphone in the bedroom of an ordinary home.

Comparison of Human Sensibility in Driving Simulator and Roller-Coaster Simulator (자동차 시뮬레이터와 롤러코스터 시뮬레이터 주행에 따른 감성 비교)

  • 민병찬;전효정;강인형;성은정;김철중;윤석준
    • Science of Emotion and Sensibility
    • /
    • v.6 no.3
    • /
    • pp.13-20
    • /
    • 2003
  • In an experimental study, we assessed human sensibility in terms of psychophysiological response according to change of speeds (40, 70, 100km/h) in a driving simulator and application of motion fitters (washout filter, non-washout later) in a roller coaster simulator. For the driving and roller coaster simulators, a group of 12 healthy men in their twenties and a group of 8 healthy men in their twenties, respectively, participated. Participants each completed a simulator sickness questionnaire (SSQ), a subjective assessment of sensations of pleasantness, tension, and arousal, and perception of speed. Physiological signals were measured by 1/f fluctuation of EEG (electroencephalogram), ECG (electrocardiogram), and GSR (galvanic skin response). These were measured pre-to-post under the experimental conditions for each simulator. Subjective pleasantness, tension, arousal, and perception of speed and physiological responses indicating a feeling of pleasantness by 1/f fluctuation were higher for the roller coaster simulator than those measured for low speed driving in the driving simulator. The mean frequency of alpha band (8-l3㎐) in EEG increased with exposure to the driving simulator relative to that for the roller coaster simulator. Heart rate variability and GSR were significantly changed between pre- and post- under each condition in the driving and roller coaster simulators. The data suggest that subjective sensibility was elevated according to gain of speed and variety of simulator motion, and physiological responses were activated with increased speed.

  • PDF

Design and Implementation of an Emotion Recognition System using Physiological Signal (생체신호를 이용한 감정인지시스템의 설계 및 구현)

  • O, Ji-Soo;Kang, Jeong-Jin;Lim, Myung-Jae;Lee, Ki-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.57-62
    • /
    • 2010
  • Recently in the mobile market, the communication technology which bases on the sense of sight, sound, and touch has been developed. However, human beings uses all five - vision, auditory, palatory, olfactory, and tactile - senses to communicate. Therefore, the current paper presents a technology which enables individuals to be aware of other people's emotions through a machinery device. This is achieved by the machine perceiving the tone of the voice, body temperature, pulse, and other biometric signals to recognize the emotion the dispatching individual is experiencing. Once the emotion is recognized, a scent is emitted to the receiving individual. A system which coordinates the emission of scent according to emotional changes is proposed.

Changes in Verbal Cognitive Performance, Blood Oxygen Saturation and Heart Rate due to 30% Oxygen Administration (30% 산소 공급에 의한 언어 인지 능력, 혈중 산소 농도, 심박동율의 변화)

  • Chung Soon Cheol;Sohn Jin Hun;Tack Gye Rae;Yi Jeong Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.173-180
    • /
    • 2005
  • In this study, changes in verbal cognitive performance, blood oxygen saturation and heart rate due to 30% concentration oxygen supply were observed. Five male (24.6±0.9) and five female (22.2±1.9) college students were asked to perform 28 verbal cognitive tasks of the same difficulty during two types of oxygen (concentration 21%, 30%) administration. The experimental sequence consisted of Rest1 (1 min.), Control (1 min.), Task (4 min.), and Rest2 (4 min.) and the physiological signals such as blood oxygen saturation and heart rate were measured throughout the stages. The experimental result showed that the performance increased significantly at 30%'s concentration of oxygen rather than 21%'s, which shows oxygen supply has positive influence on verbal cognitive performance. When 30% concentration oxygen is supplied, the oxygen saturation in the blood significantly increased comparing to 21%. The heart rate showed no significant difference. Significant correlations were found between changes in oxygen saturation and cognitive performance. It is suggested that 30% oxygen can stimulate brain activation by increasing actual blood oxygen concentration in the process of cognitive performance.

Evaluation of Thermal Comfort during Sleeping in Summer - Part II : About mean Skin Temperatures and Physiological Signals - (여름철 수면시 온열쾌적감 평가 -제 2보 : 평균 피부온도 및 생리신호에 관하여 -)

  • Kim Dong-Gyu;Kum Jong-Soo;Park Jong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • This study was performed to evaluate sleep efficiencies and conditions for comfortable sleep based on the analysis of EEGs and MST under four thermals conditions. Five female subjects who have similar life cycle and sleep patterns were participated for the sleep experiment. Their age was from 20 to 22 years old. They were healthy, and had regular sleep with consistent bed and wakeup time. It was checked whether they had a good sleep before the night of experiment. Experiments were performed in an environmental chamber of $4.1\times4.9\times2.7m$ size. EEGs were obtained from C3-A2 and C4-Al electrode sites. Sleep stages were classified, then TST, SWS latency and SWS/TST were calculated for the evaluation for sleep efficiencies on thermal conditions. As results, it was concluded that indoor thermal environments of $24\~26^{\circ}C$ was the best for comfortable and deep sleep.

Pulse wave analysis system using wrist type oximeter for u-Health service (u-Health 서비스 지원을 위한 착용형 옥시미터를 이용한 맥파 분석 시스템)

  • Jung, Sang-Joong;Seo, Yong-Su;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • This paper describes a real time reliable monitoring method and analysis system using wrist type oximeter for ubiquitous healthcare service based on IEEE 802.15.4 standard. Photoplethysmograph(PPG) is simple and cost effective technique to measure blood volume change. In order to obtain and monitor physiological body signals continuously, a small size and low power consumption wrist type oximeter is designed for the measurement of oxygen saturation of a patient unobtrusively. The measured data is transferred to a central PC or server computer by using wireless sensor nodes in wireless sensor network for storage and analysis purposes. LabVIEW server program is designed to monitor stress indicator from heart rate variability(HRV) and process the measured PPG to accelerated plethysmograph(APG) by appling second order derivatives in server PC. These experimental results demonstrate that APG can precisely describe the features of an individual's PPG and be used as estimation of vascular elasticity for blood circulation.

Study on the Treatment Mechanism of Back-Shu Points for Organ Dysfunction (배수혈의 내장기 치료 기전에 관한 연구)

  • Hwang, Man-Suk
    • Korean Journal of Acupuncture
    • /
    • v.33 no.3
    • /
    • pp.95-101
    • /
    • 2016
  • Objectives : This study aims to overview the therapeutic mechanism of back-shu points in terms of sympathetic visceral motor nervous system. Methods : Studies about autonomic nervous system, and studies and ancient texts about back-shu points were reviewed. We interpreted possible mechanism of back-shu points considering similarities of anatomical and physiological characteristics of back-shu points and visceral motor nervous system. Results : Afferent signals for organ lesions that can develop the symptoms of autonomic neurological symptoms, pain, hyperalgesia through the skin segment. Through a physical examination of the myotome and dermatome, it is possible to diagnose segmental disorders. Treatment stimulation of the thick fibers of the disorder segment skin can reduce abnormal autonomic influence over the sympathetic reflex mechanism. In addition, if spinal muscles are relaxed, the pressure on the nerve roots could be reduced and consequently the hyperactivity of the sympathetic visceral motor signal would be suppressed. Conclusions : The back-shu points treatments work through the mechanism of the sympathetic nervous reflex. Moreover, segmental acupuncture can reduce tension of the spinal muscles, thereby improving pathological conditions of the sympathetic nervous system.