• Title/Summary/Keyword: Physiological Sensor

Search Result 127, Processing Time 0.026 seconds

Affective interaction to emotion expressive VR agents (가상현실 에이전트와의 감성적 상호작용 기법)

  • Choi, Ahyoung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.5
    • /
    • pp.37-47
    • /
    • 2016
  • This study evaluate user feedback such as physiological response and facial expression when subjects play a social decision making game with interactive virtual agent partners. In the social decision making game, subjects will invest some of money or credit in one of projects. Their partners (virtual agents) will also invest in one of the projects. They will interact with different kinds of virtual agents which behave reciprocated or unreciprocated behavior while expressing socially affective facial expression. The total money or credit which the subject earns is contingent on partner's choice. From this study, I observed that subject's appraisal of interaction with cooperative/uncooperative (or friendly/unfriendly) virtual agents in an investment game result in increased autonomic and somatic response, and that these responses were observed by physiological signal and facial expression in real time. For assessing user feedback, Photoplethysmography (PPG) sensor, Galvanic skin response (GSR) sensor while capturing front facial image of the subject from web camera were used. After all trials, subjects asked to answer to questions associated with evaluation how much these interaction with virtual agents affect to their appraisals.

A Design and Implementation of Physiological Data Measurement System using Ubiquitous Sensor Network (유비쿼터스 센서 네트워크를 이용한 생리학적 데이터 측정 시스템의 설계 및 구현)

  • Min, Gyeong-Woo;Seo, Jung-Hee;Park, Hung-Bog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.852-855
    • /
    • 2010
  • Based on the rapid development of the computer network technology, the ubiquitous sensor network (USN) was developed to enable us to have access to the communication environment anywhere and anytime without the need for recognizing computers or networks. Moreover, with the increasingly high interest on individual health, the USN technology is being applied to diverse sectors for healthcare and disease prevention. In this paper, a system was designed and implemented using the USN-based RF communication for doctors and nurses who care patients in the hospital to easily measure and control the physiological data on blood pressure and blood sugar. In addition, a database was designed using MS SQL database to store and manage the blood pressure and blood sugar data, which were passively or actively measured from patients. Using the results of this study, the physiological data of patients can be managed in real time and emergency situation can be instantly addressed. It is expected that the healthcare service can be improved and the paradigm of healthcare service environment can be changed.

  • PDF

A Research for Removing ECG Noise and Transmitting 1-channel of 3-axis Accelerometer Signal in Wearable Sensor Node Based on WSN (무선센서네트워크 기반의 웨어러블 센서노드에서 3축 가속도 신호의 단채널 전송과 심전도 노이즈 제거에 대한 연구)

  • Lee, Seung-Chul;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.137-144
    • /
    • 2011
  • Wireless sensor network(WSN) has the potential to greatly effect many aspects of u-healthcare. By outfitting the potential with WSN, wearable sensor node can collects real-time data on physiological status and transmits through base station to server PC. However, there is a significant gap between WSN and healthcare. WSN has the limited resource about computing capability and data transmission according to bio-sensor sampling rates and channels to apply healthcare system. If a wearable node transmits ECG and accelerometer data of 4 channel sampled at 100 Hz, these data may occur high loss packets for transmitting human activity and ECG to server PC. Therefore current wearable sensor nodes have to solve above mentioned problems to be suited for u-healthcare system. Most WSN based activity and ECG monitoring system have been implemented some algorithms which are applied for signal vector magnitude(SVM) algorithm and ECG noise algorithm in server PC. In this paper, A wearable sensor node using integrated ECG and 3-axial accelerometer based on wireless sensor network is designed and developed. It can form multi-hop network with relay nodes to extend network range in WSN. Our wearable nodes can transmit 1-channel activity data processed activity classification data vector using SVM algorithm to 3-channel accelerometer data. ECG signals are contaminated with high frequency noise such as power line interference and muscle artifact. Our wearable sensor nodes can remove high frequency noise to clear original ECG signal for healthcare monitoring.

A Study on Wearable Emergency Medical Alarm System (착용형 응급의료 경보시스템 구현에 관한 연구)

  • Kim, Dong-Wan;Beack, Seung-Hwa
    • Journal of IKEEE
    • /
    • v.10 no.1 s.18
    • /
    • pp.55-61
    • /
    • 2006
  • In modern society, development of medical technology has extended the human life span. However, it has also caused some side-effects. Mostly old people who live alone are not available the medical service quickly when they are in emergency situations. Moreover heart related diseases as well are rapidly increasing with aging. This study proposes the emergency medical alarm system. This system measures the physiological signals such as ECG(electrocardiogram), temperature, and motion data, analyzes those data automatically, and sends the urgent message to the Emergency Medical Center and to their family. There are two main parts in the system. In the first part, physiological data acquisition part, the troublesome addition and deletion of body signals on existing proposed systems have been supplemented, which led to the modulized production by means of ECG sensor module, temperature sensor module, acceleration sensor module. The other part is mobile unit, which includes signal processing and transmission functions. And bluetooth allows two parts to communicate with each other. Data that are processed in the mobile unit are stored in the PC database through the WLAN using TCP/IP protocol.

  • PDF

Pulse wave analysis system using wrist type oximeter for u-Health service (u-Health 서비스 지원을 위한 착용형 옥시미터를 이용한 맥파 분석 시스템)

  • Jung, Sang-Joong;Seo, Yong-Su;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • This paper describes a real time reliable monitoring method and analysis system using wrist type oximeter for ubiquitous healthcare service based on IEEE 802.15.4 standard. Photoplethysmograph(PPG) is simple and cost effective technique to measure blood volume change. In order to obtain and monitor physiological body signals continuously, a small size and low power consumption wrist type oximeter is designed for the measurement of oxygen saturation of a patient unobtrusively. The measured data is transferred to a central PC or server computer by using wireless sensor nodes in wireless sensor network for storage and analysis purposes. LabVIEW server program is designed to monitor stress indicator from heart rate variability(HRV) and process the measured PPG to accelerated plethysmograph(APG) by appling second order derivatives in server PC. These experimental results demonstrate that APG can precisely describe the features of an individual's PPG and be used as estimation of vascular elasticity for blood circulation.

Physiological and Psychological Effects of Vibroacoustic Stimulation to Scapular and Sacrum of Supine Position

  • Lim, Seung Yeop;Heo, Hyun;Kim, Sang Ho;Won, Byeong Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.345-353
    • /
    • 2013
  • Objective: This research measured physiological and psychological effects of Vibroacoustic stimulation(VA) to scapular and sacrum of supine position on the mattress. Background: When vibroacoustic stimulation applies to human body, it has a positive influence on physiological and psychological effects by stimulating the organs, tissues and cells of whole body. Method: This experiment was conducted to 10 normal males in two conditions: no stimulation and vibroacoustic stimulation. No stimulation experiment was executed as a supine position for 30 minutes without any vibrational stimulus, while vibroacoustic stimulation was transmitted by the vibrational speaker, which uses 40Hz frequency. Subjects had a laser Doppler flowmeter probe in scapular, sacrum, and also had 8 channel electroencephalogram(EEG) measurement sensor in the scalp. Blood pressure and skin temperature were measured in two conditions with an underlying posture for 30 minutes. Additionally, blood flow rate and EEG were measured before and after for two minutes on two conditions. Results: According to the vibroacoustic stimulation, blood flow rate and skin temperature were increased, while blood pressure was decreased. When using vibroacoustic stimulation compared to no stimulation, blood flow rate went approximately two times higher, and skin temperature also higher 3~4 times. Furthermore, the relative alpha power of brain wave was significantly increased when we applied to vibroacoustic stimulation. Conclusion: This experiment tested the VAT embedded in mattress in two conditions. According to this experiment, VAT decreases blood pressure, improves not only a physiological effect on blood flow rate as well as skin temperature, but also psychological functions by increasing relative alpha power. Application: The results of the publishing trend analysis might help physiological and psychological effects of vibroacoustic stimulation.

OWAS and EMG-based Mason's Physical Workload Measurement (OWAS 및 근전도 기반 석공 작업부하 비교연구)

  • Seo, Byoung-Wook;Lim, Tae-Kyung;Lee, Dong-Eun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.194-195
    • /
    • 2015
  • Methods for measuring the physical workload of construction workers are classified into posture assessment techniques (i.e., OWAS, RULA, etc.) and physiological measurement techniques (i.e., EMG, heart rate, etc.). The one does not quantify the workload on a specific body part of a worker by considering the weight of the hand tools or materials on hand and time for holding a particular posture. This paper presents a procedure for evaluating a physical demand using the electromyography (EMG) sensor. This study compares the EMG measurement and the posture assessment. The case study is carried out on a masonry operation.

  • PDF

Wireless Telemetry of an Oscillating Flow using Mesoscale Flexible Cantilever Sensor (메소스케일 유연 외팔보 센서를 이용한 진동유동의 무선 계측)

  • Park, Byung Kyu;Lee, Joon Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.495-501
    • /
    • 2013
  • This paper describes a flexible wireless telemetering system using a mesoscale cantilever sensor, which is microfabricated with a patterned thin Ni-Cu foil on a resin substrate. The dynamic validation of the sensor has been conducted in a flow. The wireless telemetry is used to obtain data regarding the oscillating flows. It is shown that the sensor is nearly independent of the environmental temperature and is suitable for application to primary healthcare and diagnostic devices. It can be easily integrated with other modules for measuring physiological parameters, e.g., blood pressure, oxygen saturation, and heart rate, to increase the convenience and reliability of diagnosis. The precision and reliability of the sensor are also dependent on the design of the analog front-end and noise reduction techniques. It is shown that the present system's minimum interval between packet transmissions is ~16 ms.

Remote Vital Sign Monitoring System Based on Wireless Sensor Network using Ad-Hoc Routing (애드혹 라우팅을 이용한 무선센서네트워크 기반의 원격 생체신호 모니터링 시스템)

  • Walia Gaurav;Lee Young-Dong;Chung Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.426-429
    • /
    • 2006
  • A distributed healthcare monitoring system prototype for clinical and trauma patients, was developed, using wireless sensor network node. The proposed system aimed to measure various vital physiological health parameters like ECG and body temperature of patients and elderly persons and transfer his/ her health status wirelessly in Ad-hoc network, to remote base station which was connected to doctor's PDA/PC or to a hospital's main Server using wireless sensor node. The system also aims to save the cost of healthcare facility for patients and the operating power of the system because sensor network is deployed widely and the distance from sensor to base station was shorter than in general centralized system. The wireless data communication will follow IEEE 802.15.4 frequency communication with ad-hoc routing thus enabling every motes attached to patients, to form a wireless data network to send data to base-station, providing mobility and convenience to the users in home environment.

  • PDF

Security Analysis to an Biometric Authentication Protocol for Wireless Sensor Networks (WSN 환경에서 Biometric 정보를 이용한 사용자 인증 스킴의 안전성 분석)

  • Lee, Youngsook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.1
    • /
    • pp.59-67
    • /
    • 2015
  • A novel authentication mechanism is biometric authentication where users are identified by their measurable human characteristics, such as fingerprint, voiceprint, and iris scan. The technology of biometrics is becoming a popular method for engineers to design a more secure user authentication scheme. In terms of physiological and behavioral human characteristics, biometrics is used as a form of identity access management and access control, and it services to identity individuals in groups that are under surveillance. In this article, we review the biometric-based authentication protocol by Althobati et al. and provide a security analysis on the scheme. Our analysis shows that Althobati et al.'s scheme does not guarantee server-to-user authentication. The contribution of the current work is to demonstrate this by mounting threat of data integrity and bypassing the gateway node on Althobati et al.'s scheme. In addition, we analysis the security vulnerabilities of Althobati et al.'s protocol.