• Title/Summary/Keyword: Physics experiment

Search Result 447, Processing Time 0.031 seconds

RF Gas Sensor Using 4-Port Hybrid Coupler with Conducting Polymer (전도성 고분자 물질이 결합된 하이브리드 커플러를 적용한 RF 가스 센서)

  • Lee, Yong-Joo;Kim, Byung-Hyun;Lee, Hee-Jo;Hong, Yunseog;Lee, Seung Hwan;Choi, Hyang Hee;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • In this paper, a gas sensor using a modified $90^{\circ}$ hybrid coupler structure with conducting polymer which operates at 2.4 GHz is represented. Conducting polymers are used to the gas sensing material in proposed sensors. The conducting polymer varies its electrical property, such as work function and conductivity corresponding to the certain gas. To verify this variation of electrical property of conducting polymer at microwave frequencies, the conducting polymer is incorporated with the $90^{\circ}$ hybrid coupler structure, and this proposed sensor operates as reflection type variable attenuator and variable phase shifter. The conducting polymer is employed as impedence-variable transmission lines that cause a impedance mismatching between the general transmission line and conducting polymer. The experiment was conducted with 100 ppm ethanol gas at temperature of $28^{\circ}C$ and relative humidity of 85 %. As a result, the amplitude deviation of $S_{21}$ is 0.13 dB and the frequency satisfying ${\angle}S_{21}=360^{\circ}$ is shifted about 2.875 MHz.

Aerosol Observation with Raman LIDAR in Beijing, China

  • Xie, Chen-Bo;Zhou, Jun;Sugimoto, Nobuo;Wang, Zi-Fa
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.215-220
    • /
    • 2010
  • Aerosol observation with Raman LIDAR in NIES (National Institute for Environmental Studies, Japan) LIDAR network was conducted from 17 April to 12 June 2008 over Beijing, China. The aerosol optical properties derived from Raman LIDAR were compared with the retrieved data from sun photometer and sky radiometer observations in the Aerosol Robotic Network (AERONET). The comparison provided the complete knowledge of aerosol optical and physical properties in Beijing, especially in pollution and Asian dust events. The averaged aerosol optical depth (AOD) at 675 nm was 0.81 and the Angstrom exponent between 440 nm and 675 nm was 0.99 during experiment. The LIDAR derived AOD at 532 nm in the planetary boundary layer (PBL) was 0.48, which implied that half of the total AOD was contributed by the aerosol in PBL. The corresponding averaged LIDAR ratio and total depolarization ratio (TDR) were 48.5sr and 8.1%. The negative correlation between LIDAR ratio and TDR indicated the LIDAR ratio decreased with aerosol size because of the high TDR associated with nonspherical and large aerosols. The typical volume size distribution of the aerosol clearly demonstrated that the coarse mode radius located near 3 ${\mu}m$ in dust case, a bi-mode with fine particle centered at 0.2 ${\mu}m$ and coarse particle at 2 ${\mu}m$ was the characteristic size distribution in the pollution and clean cases. The different size distributions of aerosol resulted in its different optical properties. The retrieved LIDAR ratio and TDR were 41.1sr and 19.5% for a dust event, 53.8sr and 6.6% for a pollution event as well as 57.3sr and 7.2% for a clean event. In conjunction with the observed surface wind field near the LIDAR site, most of the pollution aerosols were produced locally or transported from the southeast of Beijing, whereas the dust aerosols associated with the clean air mass were transported by the northwesterly or southwesterly winds.

Analyzing off-line Noah land surface model spin-up behavior for initialization of global numerical weather prediction model (전지구수치예측모델의 토양수분 초기화를 위한 오프라인 Noah 지면모델 스핀업 특성분석)

  • Jun, Sanghee;Park, Jeong-Hyun;Boo, Kyung-On;Kang, Hyun-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.3
    • /
    • pp.181-191
    • /
    • 2020
  • In order to produce accurate initial condition of soil moisture for global Numerical Weather Prediction (NWP), spin-up experiment is carried out using Noah Land Surface Model (LSM). The model is run repeatedly through 10 years, under the atmospheric forcing condition of 2008-2017 until climatological land surface state is achieved. Spin-up time for the equilibrium condition of soil moisture exhibited large variability across Koppen-Geiger climate classification zone and soil layer. Top soil layer took the longgest time to equilibrate in polar region. From the second layer to the fourth layer, arid region equilibrated slower (7 years) than other regions. This result means that LSM reached to equilibrium condition within 10 year loop. Also, spin-up time indicated inverse correlation with near surface temperature and precipitation amount. Initialized from the equilibrium state, LSM was spun up to obtain land surface state in 2018. After 6 months from restarted run, LSM simulates soil moisture, skin temperature and evaportranspiration being similar land surface state in 2018. Based on the results, proposed LSM spin-up system could be used to produce proper initial soil moisture condition despite updates of physics or ancillaries for LSM coupled with NWP.

Verification of precipitation enhancement by weather modification experiments using radar data (레이더 자료를 이용한 기상조절 실험에 의한 강수 증가 검증 연구)

  • Ro, Yonghun;Cha, Joo-Wan;Chae, Sanghee
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.999-1013
    • /
    • 2020
  • Weather modification research has been actively performed worldwide, but a technology that can more quantitatively prove the research effects are needed. In this study, the seeding effect, the efficiency of precipitation enhancement in weather modification experiment, was verified using the radar data. Also, the effects of seeding material on hydrometeor change was analyzed. For this, radar data, weather conditions, and numerical simulation data for diffusion were applied. First, a method to analyze the seeding effect in three steps was proposed: before seeding, during seeding, and after seeding. The proposed method was applied to three cases of weather modification experiments conducted in Gangwon-do and the West Sea regions. As a result, when there is no natural precipitation, the radar reflectivity detected in the area where precipitation change is expected was determined as the seeding effect. When natural precipitation occurs, the seeding effect was determined by excluding the effect of natural precipitation from the maximum reflectivity detected. For the application results, it was found that the precipitation intensity increased by 0.1 mm/h through the seeding effect. In addition, it was confirmed that ice crystals, supercooled water droplets, and mixed-phase precipitation were distributed in the seeding cloud. The results of these weather modification research can be used to secure water resources as well as for future study of cloud physics.

Science Education Experts' Perception of the Remote Laboratory Sessions Provoked by COVID-19 (COVID-19으로 인해 촉발된 원격 실험 수업에 대한 과학교육 전문가들의 인식)

  • Lee, Gyeong-Geon;Hong, Hun-Gi
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.5
    • /
    • pp.391-400
    • /
    • 2021
  • This study investigated science education experts' perception of remote laboratory sessions (RLS) provoked by the COVID-19 pandemic. We conducted a total of 10 semi-structured interviews with experts in physics, chemistry, biology, and earth science education. As a result, science education experts primarily understood the RLS concerning pre-service teacher education and reconsidered the aim and goal of conventional laboratory education. On practices of RLS provoked by the COVID-19, they pointed out the learning loss due to deficiency of hands-on experience, decreased interactions between instructor and students, and instructors' increased burden. Meanwhile, they contemplated upon their adaptive implementation of RLS to suggest ways to improve RLS instruction and directions of post-COVID-19 science education. We recommend that RLS should be understood as a complemented version of minds-on teaching rather than a degraded version of hands-on teaching to elicit its full potentials. This study has its own significance providing an in-depth science educational perspective interpreting the RLS phenomena.

Exploration on the Strategies of Organizing Curriculum for Improvement of Major Basic Competencies in the Agricultural High School Students to University by Departments Identical to Their Major (농업계 고등학생들의 동일계 대학 전공기초능력 향상을 위한 교육과정 편성 방안 탐색)

  • Kim, Jin-Gu;Lee, Gun-Nam
    • Journal of vocational education research
    • /
    • v.29 no.3
    • /
    • pp.61-83
    • /
    • 2010
  • The purpose of this study was to analyze high schools' general and special subject required to successfully complete same stream curriculum which is identical to their major from agricultural high school, and to offer basic data on strategies of organizing agricultural high schools' curriculum for improving universities' major basic competencies. Using purposeful sampling technique, the professors of 116 universities professors in 8 agricultural university were analyzed through the survey research. The result was as follows. first, it appeared that for successful completion of major subjects of the same stream university, the basic science subject such as biology and chemistry has high relation with major basic ability, however math and physics are related highly in agricultural machine and agricultural civil engineering department, economics and math are in agricultural produce distribution department. Second, the basic ability such as linguistic competence and foreign language ability are essential to complete major subject. Third, if we look into relation of agriculture and life science industry stream specialized subject with major basic competencies, we can find considerable similarity between major field of university and subject name of specialized high school. Fourth, the main opinion is that basic concept and principle, laws of nature are should be main contents which is able to be practical, however experiment and practice is in food processing department, and academic theory is in biotechnology department.

A Full Scale Hydrodynamic Simulation of High Explosion Performance for Pyrotechnic Device (파이로테크닉 장치의 고폭 폭발성능 정밀 하이드로다이나믹 해석)

  • Kim, Bohoon;Yoh, Jai-ick
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • A full scale hydrodynamic simulation that requires an accurate reproduction of shock-induced detonation was conducted for design of an energetic component system. A detailed hydrodynamic analysis SW was developed to validate the reactive flow model for predicting the shock propagation in a train configuration and to quantify the shock sensitivity of the energetic materials. The pyrotechnic device is composed of four main components, namely a donor unit (HNS+HMX), a bulkhead (STS), an acceptor explosive (RDX), and a propellant (BPN) for gas generation. The pressurized gases generated from the burning propellant were purged into a 10 cc release chamber for study of the inherent oscillatory flow induced by the interferences between shock and rarefaction waves. The pressure fluctuations measured from experiment and calculation were investigated to further validate the peculiar peak at specific characteristic frequency (${\omega}_c=8.3kHz$). In this paper, a step-by-step numerical description of detonation of high explosive components, deflagration of propellant component, and deformation of metal component is given in order to facilitate the proper implementation of the outlined formulation into a shock physics code for a full scale hydrodynamic simulation of the energetic component system.

The Compositions and the Characteristics of the Chinese National Test for University Admissions, and the Analysis on Items Concerning Chemistry (중국 대학입학시험의 구성 및 특징과 화학 문항 분석)

  • Kim, Hyun-Kyung
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.8
    • /
    • pp.1158-1174
    • /
    • 2011
  • In this study, we examined the compositions, basic principles, and the area of the National Higher Education Entrance Examination (GaoKao) in 2009, we also analyzed the categories and characteristics of items. Also, the GaoKao was analyzed in terms of test specifications, the number of items, item patterns, difficulty levels, and implications of the College Scholastic Ability Test(CSAT) were explored. Results show Natural Science section of the National Test 1, 2 are 300 points per 150 min, and Natural Science, and Chemistry of Shanghai is 150 points each per 120 min. Also, the GaoKao contained multiple choice and fill in the blanks questions, and the description items are composed of experiments of various types. The GaoKao Natural Science section is composed of physics, chemistry, biology but not earth science, which is different from the CSAT. GaoKao requires basic understanding or the observation ability to reasoning, the complex thinking ability, especially emphasized on the experiment ability. The range of possible questions is in the examination outline, not the curriculum, and the ratio of questions from the University level is high. In the analysis of the behavioral domain, the ratios of the understanding and application items is higher than the CSAT, and inquiry items is lower, but the inquiry items are deeper. In case of the ratio of the expected correct answer, National Test 1 and National Test 2 is similar, but the difficult items or about 20~39% of the test is 4~5 times to that of the CSAT, making the GaoKao very difficult. The peculiar characteristics of GaoKao is the emphasis on the experiment, and even though the practical items is of lower ratio, they are very useful in life.

An Analysis of the High School 'Common Science' Contents and Textbooks (고등학교 ‘공통과학’의 교과내용 및 교과서 분석)

  • Lee, Gwang-Ho;Choi, Jong-Bum;Park, Moon-Kook;Cho, Kyu-Seong
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.453-463
    • /
    • 1997
  • The contents of high school 'Common science' textbooks was analyzed qualitatively and quantitatively. Seven common science textbooks were selected and its contents, structure, inquiry, activities, appendix and its characteristics were investigated, and analyzed using the Goal Clusters of Project Synthesis and Romey's indices of text evaluation were calculated. The contents of each unit are not much different among textbooks because they are written according to the curriculum ordinance and textbook guidelines of the Ministry of Education. The textbooks was consist of $471{\sim}519$ pages. It was distribute similarly among the chapter of 'materials', 'forces', lives' and 'earth'. The chapter of 'energy' and 'environment' was treat significantly. The contents and structure of common science is a mere physical consolidation. I make an alternative plan that a topic form. Inquiry activities used in the textbooks are 11 type, however most of that is interpretation of data, experiment, survey and discussion. Ninety six percents of the experiment, belong to the 1st level, four percents of that belong to the 2nd level of the Schwab's inquiry level and there are no activities of the 3rd level. Little attention is given to Goal Cluster I, II, IV in the common science textbooks currently employed. Its content should be broadened to include all Goal Clusters of Project Synthesis. Homey's indices representing the degrees of student involvement. are $0.57{\sim}1.14$ for sentence analysis, $0.60{\sim}1.67$ for figure and diagram analysis, $0.67{\sim}1.50$ for analysis of questions at chapter ends, respectively, student activity per page investigated being $0.6{\sim}0.9$. But chapter summaries cease to repeats the conclusions of the chapter also it be rather formally and inattentively written.

  • PDF

Experimental and Numerical Study on the Effect of the Rain Infiltration with the Increase of Surface Temperature (지표면 온도상승이 빗물의 토양침투에 미치는 영향에 대한 실험 및 수치 해석적 연구)

  • Shin, Nara;Shin, Mi Soo;Jang, Dong Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.6
    • /
    • pp.422-429
    • /
    • 2013
  • It is generally known that the increase of the Earth surface temperature due to the global warming together with the land desertification by rapid urban development has caused severe climate and weather change. In desert or desertification land, it is observed that there are always severe flooding phenomena, even if desert sand has the high porosity, which could be believed as the favorable condition of rain water infiltration into ground water. The high runoff feature causes possibly another heavy rain by quick evaporation with the depletion of underground water due to the lack of infiltration. The basic physics of desert flooding is reasonably assumed due to the thermal buoyancy of the higher temperature of the soil temperature than that of the rain drop. Considering the importance of this topic associated with water resource management and climate disaster prevention, no systematic investigation has, however, been reported in literature. In this study, therefore, a laboratory scale experiment together with the effort of numerical calculation have been performed to evaluate quantitatively the basic hypothesis of run-off mechanism caused by the increase of soil temperature. To this end, first, of all, a series of experiment has been made repeatedly with the change of soil temperature with well-sorted coarse sand having porosity of 35% and particle diameter, 2.0 mm. In specific, in case 1, the ground surface temperature was kept at $15^{\circ}C$, while in case 2 that was high enough at $70^{\circ}C$. The temperature of $70^{\circ}C$ was tested as this try since the informal measured surface temperature of black sand in California's Coachella Valley up to at 191 deg. $^{\circ}F$ ($88^{\circ}C$). Based on the experimental study, it is observed that the amount of runoff at $70^{\circ}C$ was higher more than 5% compared to that at $15^{\circ}C$. Further, the relative amount of infiltration by the decrease of the surface temperature from 70 to $15^{\circ}C$ is about more than 30%. The result of numerical calculation performed was well agreed with the experimental data, that is, the increase of runoff in calculation as 4.6%. Doing this successfully, a basic but important research could be made in the near future for the more complex and advanced topic for this topic.