• Title/Summary/Keyword: Physics Teachers

Search Result 130, Processing Time 0.02 seconds

The development of training platform for CiADS using cave automatic virtual environment

  • Jin-Yang Li ;Jun-Liang Du ;Long Gu ;You-Peng Zhang;Xin Sheng ;Cong Lin ;Yongquan Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2656-2661
    • /
    • 2023
  • The project of China initiative Accelerator Driven Subcritical (CiADS) system has been started to construct in southeast China's Guangdong province since 2019, which is expected to be checked and accepted in the year 2025. In order to make the students in University of Chinese Academy of Sciences (UCAS) better understand the main characteristic and the operation condition in the subcritical nuclear facility, the training platform for CiADS has been developed based on the Cave Automatic Virtual Environment (CAVE) in the Institute of Modern Physics Chinese Academy of Sciences (IMPCAS). The CAVE platform is a kind of non-head mounted virtual reality display system, which can provide the immersive experience and the alternative training platform to substitute the dangerous operation experiments with strong radioactivity. In this paper, the CAVE platform for the training scenarios in CiADS system has been presented with real-time simulation feature, where the required devices to generate the auditory and visual senses with the interactive mode have been detailed. Moreover, the three dimensional modeling database has been created for the different operation conditions, which can bring more freedom for the teachers to generate the appropriate training courses for the students. All the user-friendly features will offer a deep realistic impression to the students for the purpose of getting the required knowledge and experience without the large costs in the traditional experimental nuclear reactor.

Analysis of Teacher Understanding After Adapting Collaborative Problem-Solving for Character Competence (CoProC) Program on Science Education (과학교육 기반 인성역량 함양을 위한 협력적 문제해결(CoProC) 프로그램 실천 교사들의 이해 분석)

  • Kang, Eugene;Park, Jihun;Park, Jongseok;Nam, Jeonghee
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.2
    • /
    • pp.133-144
    • /
    • 2021
  • Science teachers in elementary schools and secondary schools recognize the necessity of character education, feeling difficulties such as evaluation methods, mood of competition, extra work and lack of time according to previous research, which were based on answers from science teachers not experiencing character education. As a rare study of teacher experiencing, previous researches didn't fully address the problems and suggestions about adopting character education in science classrooms. This study is about teacher practice of character education on site with the CoProC (Collaborative Problem-Solving for Character Competence) program in science classes with which other previous studies shed new light. Five teachers, adapting the CoProC program in their science classes, participated in two interviews, sharing their student achievement in character education. Results showed that student achievement was high when their teacher had experienced the training program, development, and classes of CoProC rather than their normal teaching career. Teacher recognition on the aims of CoProC influenced difficulties, evaluation, and feedback.

Ways to Restructure Science Elective Courses in Preparation for the High School Credit System and the 2022 Revised Curriculum (고교학점제와 2022 개정 교육과정에 대비한 과학과 선택과목 재구조화 방안 탐색)

  • Lee, Il;Kwak, Youngsun
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.2
    • /
    • pp.145-154
    • /
    • 2021
  • This study aims to investigate teachers' perceptions of the composition of high school science elective courses ahead of the 2022 curriculum revision, and to derive implications for the organization of the 2022 revised science curriculum in preparation for the full implementation of the high school credit system. To this end, a survey was conducted by randomly sampling high schools across the country. A total of 192 science teachers responded to the questionnaire. In addition, 12 high school science teachers were selected as a focus group, and in-depth interviews were conducted to investigate opinions on the restructuring of elective courses in science. Main research results include 129 (67.2%) science teachers in the survey answered that the current 2015 curriculum's science and elective courses system should be maintained. In the next curriculum, when reconstructing science elective subjects, it is necessary to provide an opportunity to experience the entire contents of each science field through Science I·II system as before, and to ensure student choice in preparation for the credit system. In addition, the opinion that general elective subjects should be organized to include all the contents of science I and II subjects was the highest. Through in-depth interviews, science teachers emphasized that the current science I subject system allows access to the content areas of science as much as possible as the number of subjects is small, and that subjects, such as physics, where the hierarchy of concepts is important, should deal with important content within one subject rather than divided by area. On the other hand, in the current I subject system, there is no subject for liberal arts students to choose from, so teachers suggested that science electives should be organized by subdividing each content area. Based on the research results, the necessity of organizing high school science elective courses in consideration of the purpose of the high school credit system, ways to organize science-convergence elective courses as subjects for all students regardless of career aptitude, ways to organize science-career elective courses, and ways to organize science elective courses in connection with the college admission system were proposed.

A Meta-Analysis of Research on the Impact of Microcomputer-Based Laboratory in Science Teaching and Learning

  • Han, Hyo-Soon
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.4
    • /
    • pp.375-385
    • /
    • 2003
  • In an effort to provide information about the effect of Microcomputer-Based Laboratory (MBL) use in science teaching and learning on student achievement and attitudes, a review of research analyzed studies was done between 1981 and 2001, using a meta-analysis procedure. Thirty-seven published and unpublished studies were reviewed. Use of MBL was shown to be potentially effective in the following condition of class; two students, physics teaching, more than one topic, or at the college level. Appropriate research design strategies, financial support (including hardware and software), and the use of more than one instrument for assessing the effect of the MBL instruction are crucial factors for more informative research studies. While helpful in many respects, the prior research revealed a number of problems related to the use of MBL in school science teaching and learning. The prior research does not support the desired intention described in the theory-based outcomes and reveals so little about how teachers and students use MBL, how it influences their teaching and learning, and how effectively it fits into the existing science curriculum. In order to know if the integration of MBL in the existing school science is worth it or not, more careful research design and comprehensive research should be done.

Uniformity in Highschool Mathematics Textbooks in Definite Integral and its applications\ulcorner (정적분과 응용- 교과서 내용의 균일성\ulcorner)

  • 석용징
    • Journal of Educational Research in Mathematics
    • /
    • v.11 no.2
    • /
    • pp.307-320
    • /
    • 2001
  • Traditionally, there are many inherent restrictions in highschool mathematics textbooks. They are restricted in its contents and inevitably resorted to reader's ability of intuition. So they are usually lacked logical precisions and have various differences in expressions. We are mainly concerned with the definite integral and its applications in current highschool mathematics II textbooks according to 6th curriculum. We choose 6 of them arbitrarily and survey by comparison to deduce some controversial topics among them as follows. 1) absurd metaphors in formula process 2) confusions in important notations and too much choices in terms and statements. 3) lack of precisions in - teaching hierarchy (between some contents of Physics and the applications of definite integral) - introducing a proof of theorem (fundamental theorem of Calculus I) - introducing the methods (integral substitutions 1, ll) 4) adopting small topics such as - mean value theorem of integral - integrals with variable limits. In coming 7th curriculum, highschool students in Korea are supposed to choose calculus as a whole, independent course. So we hope that the suggested controversial topics are to be referred by authors to improve the preceding Mathematics ll textbooks and for teachers to use them for better mathematics education.

  • PDF

A Study on the Operational Skills of Apparatuses in Observation and Experiments (관찰과 실험에서 기구의 조작 기능에 관한 연구)

  • Park, Jae-Ho;Moon, Jung-Dae;Jo, Un-Bock;Hwang, Soo-Jin;Lee, Young-Joo;Sim, Jeong-Ae;Seong, Jeong-Hie;Kim, Young;Park, Jong-Kil
    • Journal of The Korean Association For Science Education
    • /
    • v.9 no.2
    • /
    • pp.29-45
    • /
    • 1989
  • The purpose of this paper is to study the operational skills of apparatuses in observation and experiments a point of view of the teaching-learning guidance of the middle school science. In order to understand the actual condition of the field learner, the achivment levels of learner have been investigated on the operational skills of apparatuses, observation and experiments through 1120 students of 16 middle schools. The results showed that there were large differences at each item and especially, in animate natural part(physics and chemistry), the handling ability was very low to average 33 percentage. By the result of analyzing the actual condition of the experiment and field science from the question of 114 science teachers who work in 40 middle schools in P distriet. it has been recognized that though the lessons through the experiments stimulate the motivation of learning, it couldn't be mamaged efficently because of all the educational conditions. And it was revealed that the major part of Experiment was performed not by student who is subjective in the course of learning but by teacher through experiments.

  • PDF

Effectiveness Analysis of Computer Science Textbooks focusing on Digital Therapeutics

  • Eunsun Choi;Namje Park
    • Journal of Internet Computing and Services
    • /
    • v.25 no.3
    • /
    • pp.9-18
    • /
    • 2024
  • Digital therapy has emerged as a novel treatment modality, propelled by advancements in information and communication technology. In the last five years, there has been a substantial surge in research publications addressing digital therapeutics (DTx) interventions, signaling a sustained upward trajectory in this field. The dynamic nature of computer science, marked by continuous innovation and development, underscores the need for agile adaptation to rapid changes. Consequently, computer science education is compelled to offer students insights into the latest trends. This research endeavors to contribute to the evolving landscape by developing textbooks that impart knowledge about DTx, an integration of information technology. The study focuses on the application of these textbooks to elementary and middle school students in South Korea. The instructional materials have been carefully organized to enable students to learn about the principle of Attention Deficit Hyperactivity Disorder (ADHD) DTx at the elementary level and the DTx that can prevent and address the digital drama at the middle school level. Based on the application of the textbook, students who received instruction using the textbook showed statistically significant improvements in all subcategories of creative problem-solving ability, including idea modification, visualization, task focus, analogy, idea generation, and elaboration (p<.01). Additionally, there were statistically significant changes in students' self-efficacy before and after using the textbook, with negative efficacy decreasing, and positive efficacy and social efficacy increasing (p<.001).

Exploration of the Status of Course Completion and Ways to Raise Selection Rates of General Elective Courses in the 2015 Revised Science Curriculum (2015 개정 과학과 일반선택과목의 수강 현황 및 선택률 제고 방안 탐색)

  • Lee, Il;Kwak, Youngsun
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.2
    • /
    • pp.217-226
    • /
    • 2020
  • The purpose of this research is to draw suggestions on the settling of the 2015 revised curriculum and the direction of science curriculum improvement by identifying the current status of science general elective courses for high school sophomores, and examining teachers' perception. To this end, with 12 city and provincial education offices' cooperation, we analyzed the status of science elective subjects that freshmen took in 2018 by school year, school type and region. In addition, in-depth interviews were conducted with nine science teachers of the focus group to discuss ways to improve curriculum operation and implementation of science general elective courses, and ways to raise the selection rate. The number of science general elective courses for high school students in 12 municipal and provincial education offices was confirmed to be 163,710 for Physics I, 216,754 for Chemistry I, 290,736 for Bioscience I, and 200,861 for Earth Science I. By school type, autonomous high schools have the highest completion rate, while specialized schools and vocational schools have very low rates. Units completed per semester for general elective courses were mostly three units (61.5%) and two units (28.7%). High school science teachers suggested reconstruction of three-unit elective courses that can be completed in one semester, content development focused on competences rather than knowledge, and the need for a teacher community to improve teachers' teaching competences. Based on the results of the research, ways to operate high school science elective curriculum in preparation for the high school credit system were suggested.

Analysis and Evaluation of the Earth Science Content Relevance in the 7th National Science Curriculum (제7차 과학과 교육과정 지구과학 내용의 적정성 분석 및 평가)

  • Lee, Yang-Rak;Kwak, Young-Sun;Kim, Dong-Young
    • Journal of the Korean earth science society
    • /
    • v.26 no.8
    • /
    • pp.759-770
    • /
    • 2005
  • The purpose of this study is to examine the Earth science content relevance of the 7th national science curriculum. For this purpose, we (1) analyzed science curriculum or content standards of Korea, California, England and Japan, (2) compared science textbooks of Korea and Japan, (3) conducted a nationwide survey to gather opinions from students, teachers, professors and textbook authors about the relevance of the science curriculum and textbooks. According to the results, the Earth science contents of the 7th national science curriculum were not appropriate in terms of the objectives of science curriculum and the needs of students and society. The main reasons include the equal division among physics, chemistry, biology and earth science, iack of connection due to fractionation of units, overly strict application of spiral curriculum, and redundant amount of activities and concepts to cover in the textbook. Major suggestions fir securing the relevance of Earth science contents are as follows: First, the science contents and the size of units at each grade level should be determined according to the students' characteristics, not by equal portion rule. Second, the excessive overlapping and repetition of contents due to the spiral curriculum should be avoided. In addition, the number of activities should be reduced and the quality of required science activities should be improved. Third, to raise students' interest in Earth science, real-life applications and real-world Earth science contents should be emphasized including natural disasters, safety, universe and space exploration, and natural resources. Lastly, considering one of the relevance criteria is feasibility, supports for schools and science teachers are needed to realize the goal of the intended science curriculum.

An Analysis of Inquiry Activities Performed by Pre-service Elementary Teachers to Learn Optical Phenomena Using Algodoo Simulations (Algodoo 시뮬레이션을 활용한 초등 예비교사의 광학 현상 탐구 활동 분석)

  • Park, Jeongwoo
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.3
    • /
    • pp.538-552
    • /
    • 2022
  • This study attempted to understand the characteristics of pedagogic activities performed by pre-service elementary school teachers. To this end, it applied Algodoo simulations to analyze the actions of students and obtain educational implications for optical learning. The study's participants comprised 79 first-year students enrolled in a teacher training college. Their activities could be classified as representation reproductions, verification experiments, and inquiry experiments. Students who performed representation reproduction exercises replicated renowned and authoritative exemplars, apprehending and demonstrating their principal features through simulations. Students performing verification experiments attempted to validate previously learned optical concepts by reviewing the relevant theoretical contexts. Such students primarily conducted simple experiments. Students accomplishing inquiry experiments used simulations to explore phenomena they did not know. Some of them even investigated optical phenomena beyond the domain of general physics. The above results confirmed that free optical experiments performed using Algodoo can effectively denote starting points for learners to engage in activities at varying levels. Additionally, students require assistance from instructors in addressing queries about the application of the principles and models related to optics. This study suggests ways in which instructors should help students at each level of activity. Additionally, the paper presents examples of varying levels of inquiry-related activities available on Algodoo. It also discusses the advantages and disadvantages of performing inquiry-based activities on Algodoo and suggests ways of enhancing the learning achieved through this platform.