• Title/Summary/Keyword: Physicochemical parameters

Search Result 326, Processing Time 0.033 seconds

Standardization and Development of Pharmacopoeial Standard Operating Procedures (SOPs) of Classical Unani Formulation

  • Mannan, Mohd Nazir;Kazmi, Munawwar Husain;Zakir, Mohammad;Naikodi, Mohammed Abdul Rasheed;Zahid, Uzma;Siddiqui, Javed Inam
    • CELLMED
    • /
    • v.10 no.2
    • /
    • pp.16.1-16.8
    • /
    • 2020
  • Standardization of drug deals with confirmation of drug identity and determination of drug quality and purity. Unani herbal formulations are used in traditional medicine for the treatment of various diseases. Cancer is a disease which causes abnormal, uncontrolled growth of body tissue or cells, which tend to proliferate in an uncontrolled way. Spread of cancer from site of origin to other organs of the body is called metastasis. It is a hyper proliferative disorder involving, transformation, dysregulation of apoptosis, invasion and angiogenesis. The present study aimed to standardize a classical Unani formulation (CUF) described as anticancer properties. The CUF has been used for anti-cancerous activity (Dāfi'-i-saraṭān) in human population by Unani physicians for centuries. The standardization parameters carried out for classical Unani formulation are pharmacognostical studies, physicochemical parameters, high-performance thin layer chromatography (HPTLC), microbial load, aflatoxins, and heavy metals revealing specific identities and to evaluate Pharmacopoeial standards. Experiment and the data obtained established the Pharmacopoeial standards for this formulation for identification and quality control purpose. The CUF has been successfully standardized and standard operating procedures (SOPs) for its preparation has been laid down which may serve as a standard reference in future. The standardization data of this formulation may be used as a standard guideline for preparation of the formulation in future.

Physicochemical Properties of Korean Raw Noodle Flours (우리나라 생면용 밀가루의 성질)

  • Shin, Soong-Nyong;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.418-424
    • /
    • 2005
  • The physicochemical properties of raw noodle flours (n = 11) commercially produced from Australian Standard White (ASW) (Group 1, n = 8) and blonds (Group 2, n = 3) of ASW and Australian hard, western white or hard red winter were investigated. Protein and ash contents were lower in Group 1. The tristimulus color values, mean particle size, flour swelling volume (FSV) and rheological parameters of farinograph and extensigraph were not different between two flour groups. Peak viscosity measured with Rapid Visco Analyzer was higher in Group 1. The protein content was positively correlated with mean particle size, dough stability and dough extensibility, and negatively correlated with FSV and peak viscosity. The FSV wag positively correlated with the peak viscosity. The rheological parameters of dough did not show any correlations with FSV and peak viscosity.

Preparation of Biodegradable PLGA Microspheres for Sustained Local Anesthesia and Their in vitro Release Behavior (지속적인 국소마취를 위한 생분해성 PLGA 미립구의 제조와 생체외 방출 거동)

  • 조진철;강길선;최학수;이종문;이해방
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.728-735
    • /
    • 2000
  • Fentanyl-loaded biodegradable poly(L-lactide-co-glycolide) (75 : 25 by mole ratio of lactide to glycolide, PLGA) microspheres (MSs) were prepared to study the possibility for long-acting local anesthesia. We developed the fentanyl base (FB, slightly water-soluble)-loaded PLGA MSs by means of conventional O/W solvent evaporation method. The size of MSs was in the range of 10~150 ${\mu}{\textrm}{m}$. The morphology of MSs was characterized by SEM, and the in vitro release amounts of FB were analyzed by HPLC. The lowest porous cross-sectional morphology and the highest encapsulation efficiency were obtained by using gelatin as an emulsifier. The influences of several preparation parameters, such as emulsifier types, molecular weights and concentrations of PLGA, and initial drug loading amount, etc., have been observed in the release patterns of FB. The release of FB in vitro was more prolonged over 25 days, with close to zero-order pattern by controlling the preparation parameters. We also investigated the physicochemical properties of FB-loaded PLGA MSs by X-ray diffraction and differential scanning calorimeter.

  • PDF

Quality and Acceptability of Meat Nuggets with Fresh Aloe vera Gel

  • Rajkumar, V.;Verma, Arun K.;Patra, G.;Pradhan, S.;Biswas, S.;Chauhan, P.;Das, Arun K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.702-708
    • /
    • 2016
  • Aloe vera has been used worldwide for pharmaceutical, food, and cosmetic industries due to its wide biological activities. However, quality improvement of low fat meat products and their acceptability with added Aloe vera gel (AVG) is scanty. The aim of this study was to explore the feasibility of using fresh AVG on physicochemical, textural, sensory and nutritive qualities of goat meat nuggets. The products were prepared with 0%, 2.5%, and 5% fresh AVG replacing goat meat and were analyzed for proximate composition, physicochemical and textural properties, fatty acid profile and sensory parameters. Changes in lipid oxidation and microbial growth of nuggets were also evaluated over 9 days of refrigerated storage. The results showed that AVG significantly (p<0.05) decreased the pH value and protein content of meat emulsion and nuggets. Product yield was affected at 5% level of gel. Addition of AVG in the formulation significantly affected the values of texture profile analysis. The AVG reduced the lipid oxidation and microbial growth in nuggets during storage. Sensory panelists preferred nuggets with 2.5% AVG over nuggets with 5% AVG. Therefore, AVG up to 2.5% level could be used for quality improvement in goat meat nuggets without affecting its sensorial, textural and nutritive values.

Evaluation of physicochemical and textural properties of chicken breast sausages containing various combinations of salt and sodium tripolyphosphate

  • Choi, Ji Seon;Chin, Koo Bok
    • Journal of Animal Science and Technology
    • /
    • v.62 no.4
    • /
    • pp.577-586
    • /
    • 2020
  • This study was to investigate the effect of salt alone or in combination with phosphate on physicochemical and textural properties, and chemical interactions of low-fat model sausages. pH, color, expressible moisture (EM), cooking loss (CL), proximate analysis, textural profile analysis and low-vacuum scanning electron microscopy were performed. As salt content increased, color tended to decrease, as did EM and CL parameters, indicating that the ability to retain moisture was improved with increased salt levels (p < 0.05). In addition, textural hardness, gumminess and chewiness all increased with increasing salt (p < 0.05). Sausages with 0.3% salt showed the lowest cohesiveness compared to those with salt levels higher than 0.3% (p < 0.05). Addition of sodium tripolyphosphate (STPP) increased pH of sausages. Increasing salt and STPP did not affect lightness (p > 0.05), but did increase redness and yellowness (p < 0.05). The moisture content was higher when the salt and STPP contents were increased (p < 0.05), but no differences in the fat and protein contents (%) were observed (p > 0.05). EM and CL tended to decrease with increasing salt and STPP. In textural properties, the combination of 1.8% salt and 0.3% STPP was the best among other treatment (p < 0.05). Surface microstructure showed a flat and dense structure with increasing salt and STPP. Since the addition of salt and phosphate improved the functionality, textural and physicochemical properties of meat products in this study, meat products will need to be developed in line with consumer's preference.

Physicochemical and sensory characteristics of commercial top-fermented beers (시판 상면발효맥주의 관능 및 이화학 특성 분석)

  • Sung, Se-ah;Lee, Seung-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.35-43
    • /
    • 2017
  • The sensory characteristics of 12 commercial top-fermented beers were determined by sensory descriptive analysis. Beer samples were also analyzed for soluble solids, titratable acidity, pH, reducing sugar content, bitterness unit (BU), turbidity, hunter color values, amino acid content, total phenolic content, and DPPH radical scavenging activity. Five appearance, nine aroma, six flavor/taste, and four mouth-feel related sensory attributes were evaluated by a panel of nine judges. As the result of three way analysis of variance of descriptive data, all sensory attributes except "cereal" aroma and "salty" taste showed significant differences among the beers (p<0.05). Based on the principal component analysis of the descriptive data, samples were primarily separated by first and second principal components, which accounted for 78% of the total variance between the beers with high intensities of "yellow color", "caramel aroma", and "barley taste" versus "hop aroma", "sour", and "citrus aroma". In the correlation analysis between the sensory terms and physicochemical parameters, BU, total phenolic content, titratable acidity, soluble solids, and yellowness ($b^*$) showed significant positive correlations with citrus aroma, pineapple aroma, and fresh aroma characteristics.

The physicochemical and sensory characteristics of almond gruel according to the concentration and pretreatment of almonds (구운 아몬드와 생 아몬드 첨가량이 다른 죽의 품질 특성)

  • Ryu, Seung-Yeon;Cho, Young-Sim;Cho, Yun-Kyung;Jung, Ah-Ram;Shin, Ji-Hun;Yeo, In-Ok;Joo, Na-Mi;Han, Young-Sil
    • Korean journal of food and cookery science
    • /
    • v.23 no.6
    • /
    • pp.832-838
    • /
    • 2007
  • The purpose of this study was to investigate the physicochemical and sensory properties of different almond gruels according to the concentration and pretreatment of the almonds. For the physicochemical parameters, pH, sweetness and viscosity decreased with an increasing almond content, while spreadability, lightness, redness, and yellowness increased. In addition, pH, sweetness, spreadability and viscosity decreased by using baked almonds. Also the L(lightness) and a(redness) color values increased by using baked almonds, whereas the b-value (yellowness) decreased. In the sensory evaluation flavor and nutty taste were significantly different(p<.001) among the samples. The overall preference scores also showed significant differences(p<.001) between the different concentrations of almond. The almond gruels containing 40%, 60%, and 80% almond showed higher preferences than the 0 and 20% concentrations.

Physicochemical Properties of Pork Neck and Chicken Leg Meat under Various Freezing Temperatures in a Deep Freezer

  • Kim, Eun Jeong;Lee, SangYoon;Park, Dong Hyeon;Kim, Honggyun;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.40 no.3
    • /
    • pp.444-460
    • /
    • 2020
  • This study was conducted to investigate the effects of freezing and storage temperature (-18℃, -50℃, and -60℃) on the physicochemical properties of pork neck and chicken leg meat in home-scale deep freezers. Pork neck was cut into a thickness of 3 cm (9×9×3 cm, 150 g), individually packed in air-containing packages, and stored at different temperature (-18℃, -50℃, and -60℃) for 6 months. Chicken leg meats were prepared (10 cm long, weighing 70 g) and packed in the same manner. Frozen samples were thawed at 2℃. Physicochemical properties such as thawing loss, cooking loss, water-holding capacity, color, volatile basic nitrogen (VBN), and thiobarbituric acid reactive substances (TBARS) were evaluated. The samples frozen by deep freezing (-60℃) was favorable with respect to thawing loss, color, and VBN. Samples frozen at -60℃ had lower values of thawing loss and VBN than those frozen at -18℃ for all storage periods (p<0.05). Color parameters were more similar to those of fresh meat than to those of samples frozen at -18℃ for 6 months. The TBARS of all samples were below 0.3 mg malondialdehyde/kg, thereby indicating oxidative stability of lipids. Consequently, deep freezing at -60℃ may be acceptable for maintaining the quality of fresh pork neck and chicken leg meat for 6 months without deterioration.

Hydrophobic and Hydrophilic PDMS Sponges Prepared Through Physicochemical Treatments (물리화학적 처리에 따른 PDMS 특성 조절)

  • Nam, Kyungmok;Park, Sungmin;Kim, Jonghun;Yoon, Sang-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.8
    • /
    • pp.737-742
    • /
    • 2016
  • An elastomer (especially PDMS) sponge is considered to be a promising selective absorber in cleaning up oil spills. The performance of a PDMS sponge in capturing and separating oil from (sea) water depends on several parameters such as surface roughness, physicochemical treatments, and hydrostatic stability. Here, we first present a method of fabricating the PDMS sponges having numerous micro-sized pores that act as absorption and storage spaces for the target material, and then we report an experimental effort undertaken to control the surface physicochemistry (i.e., hydrophobicity or hydrophilicity) of the PDMS sponges by adjusting the size of the pores and the concentration of the surfactant (i.e., silwet L-77). From the experimental results, we develop an in-depth understanding of the mechanism for controlling the surface physicochemistry of PDMS using water-soluble micro-sized particles and a surfactant. The surface energy and absorbing behavior of the PDMS sponges are also extensively discussed.

In vitro and in vivo pharmacokinetic characterization of LMT-28 as a novel small molecular interleukin-6 inhibitor

  • Ahn, Sung-Hoon;Heo, Tae-Hwe;Jun, Hyun-Sik;Choi, Yongseok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.670-677
    • /
    • 2020
  • Objective: Interleukin-6 (IL-6) is a T cell-derived B cell stimulating factor which plays an important role in inflammatory diseases. In this study, the pharmacokinetic properties of LMT-28 including physicochemical property, in vitro liver microsomal stability and an in vivo pharmacokinetic study using BALB/c mice were characterized. Methods: LMT-28 has been synthesized and is being developed as a novel therapeutic IL-6 inhibitor. The physicochemical properties and in vitro pharmacokinetic profiles such as liver microsomal stability and Madin-Darby canine kidney (MDCK) cell permeability assay were examined. For in vivo pharmacokinetic studies, pharmacokinetic parameters using BALB/c mice were calculated. Results: The logarithm of the partition coefficient value (LogP; 3.65) and the apparent permeability coefficient values (Papp; 9.7×10-6 cm/s) showed that LMT-28 possesses a moderate-high cell permeability property across MDCK cell monolayers. The plasma protein binding rate of LMT-28 was 92.4% and mostly bound to serum albumin. The metabolic half-life (t1/2) values of LMT-28 were 15.3 min for rat and 21.9 min for human at the concentration 1 μM. The area under the plasma drug concentration-time curve and Cmax after oral administration (5 mg/kg) of LMT-28 were 302±209 h·ng/mL and 137±100 ng/mL, respectively. Conclusion: These data suggest that LMT-28 may have good physicochemical and pharmacokinetic properties and may be a novel oral drug candidate as the first synthetic IL-6 inhibitor to ameliorate mammalian inflammation.