• Title/Summary/Keyword: Physicochemical and mechanical properties

Search Result 94, Processing Time 0.022 seconds

Development of Yeast Leavened Pan Bread Using Commercial Doenjangs (Korean Soybean Pastes): 1. Physicochemical Properties of Doenjang and Physical Properties of Bread Added with Doenjang (시판 된장을 이용한 식빵 제조: 1. 된장의 이화학적 특성 및 된장을 첨가한 식빵의 물리적 특성)

  • 오현주;문혜경;김창순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.7
    • /
    • pp.1002-1010
    • /
    • 2003
  • This study was carried out to develope yeast leavened pan bread using the commercial Doenjangs (Korean soybean pastes). Physicochemical properties of the Doenjang products were measured such as aminonitrogen, pH, titratable acidity and salinity, reducing sugar, total free sugar, total organic acid, PDI (protein dispersibility index) and color. Seven products of Doenjang were freeze-dried and powdered to be used in bread formula at the levels of 2.5, 5.0, 7.5 and 10.0%. When the Doenjang powder was added up to 5.0%, the ovenspring during baking remarkably increased resulting in increased loaf volume. However, with Doenjang powder more than 7.5%, the loaf volume became smaller than the control as the dough expansion and ovenspring decreased. Thus when Doenjang was added to bread dough, the loaf volume was highly correlated with ovenspring (r=0.92) but it was not with dough expansion during 1st fermentation (r=0.56). The browning color of bread crust and crumb became deeper with decrease in L value as the addition of Doenjang powder increased. From the mechanical texture measurements of bread crumb, hardness, gumminess and chewiness decreased with addition of Doenjang powders. Regardless of the kinds of Doenjang, the Doenjang powders could be added into the bread dough up to 5.0%, improving the loaf volume and texture of yeast leavened pan bread and demonstrating the possibility of producing a functional bread using the Doenjang powders.

Size Distribution and Physicochemical Characteristics of MSW for Design of Its Mechanical Biological Treatment Process (폐기물전처리(MBT)시설 설계를 위한 생활폐기물의 입도분포 및 물리화학적 특성에 관한 연구)

  • Park, Jin-Kyu;Song, Sang-Hoon;Jeong, Sae-Rom;Jung, Min-Soo;Lee, Nam-Hoon;Lee, Byoung-Chul
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.1
    • /
    • pp.62-69
    • /
    • 2008
  • There has been a recent trend in Korea that treatments for combustible wastes among municipal solid waste (MSW) by those methods, such as incineration and landfill are restricted as much as possible and Mechanical Biological Treatment (MBT) are encouraged actively in order to promote resource recovery. To build and operate properly these facilities, the physicochemical characteristics of MSW should be analyzed precisely beforehand. In particular, designing a crusher or separator properly which is the main process in MBT facilities of MSW. require the information on the size distribution characteristics of MSW, but they are nor sufficient in the qualities and quantities yet as of now. Accordingly, this study aims to evaluate size distribution characteristics of MSW and its physicochemical characteristics by size. The samples of MSW were collected from detached dwelling area, apartment area, business area, and commercial area of A city in Korea. According to the result of analysis, paper records 29.78~60.02% by wet weight basis, so it was the most regardless of the regions where the wastes were generated. And in terms of element analysis, Carbon(C) was 34.77~44.39%, the largest friction, and Oxygen(O) was the next occupying 19.46~33.71%. As indices of RDFs, Chlorine(Cl) was 0.39~0.83%, so it was less than the standard, 2.0%(by dry weight basis); moreover, Sulfur(S) did not exceed the standard, 0.6%, either. In the size distribution of MSW, waste fraction ranging 50~80mm in diameter was the most in combustible waste while 30~50mm was in incombustible waste.

  • PDF

Sensory and Physicochemical characteristics and Storage time of Daechu-Injeulmi added with various levels of chopping jujube (다진 대추를 첨가한 대추인절미의 관능적, 이화학적 특성과 저장성 연구)

  • 차경희;이효지
    • Korean journal of food and cookery science
    • /
    • v.17 no.1
    • /
    • pp.29-42
    • /
    • 2001
  • The purpose of this study was 10 investigate the effect of jujube on the physicochemical properties of lnjeulmi during storage. Various lnjeulmi samples were prepared with steamed glutinous rice, glutinous rice flour, or brown glutinous rice flour along with the addition of chopped jujube at 3, 6, 9, or 12% of rice. In sensory evaluation, the more jujube was added, the stronger sweetness and bitterness were obtained. The samples made with steamed glutinous rice gave the harshest texture. Tenderness and moistness of Deachu-Injeulmi were the highest in the samples made with glutinous rice followed by brown glutinous rice flour, and glutinous rice flour, and they were increased with less amount of jujube. The chewiness of the samples made with brown glutinous rice flour' was the highest and the samples made with glutinous rice were the coarsest. The more jujube was added, the redness and yellowness of Daechu-Injeulmi were increased. The moisture content was higher in the samples made with glutinous rice followed by glutinous rice flour and brown glutinous rice flour. The reducing sugar content of samples during storage was higher in the order of glutinous rice, glutinous rice flour, and brown glutinous rice flour, and it was dramatically reduced until 48hr of storag e; however, it was increased a little bit after 72 hr. The degree of gelatinization was reduced rapidly during the first 24hr of storage, and it was decreased in the order of brown glutinous rice flour, glutinous rice flour, and glutinous rice. The springiness and cohesiveness were decreased during storage. The chewiness and gumminess were increased with the increase of added jujube, and they were increased until 24hr of storage, then decreased after 48hr. The hardness was the highest in the samples made with glutinous rice and 12% of chopped jujube showed the least change in the hardness. The more jujube was added, the less change in the hardness of samples was observed during storage, consequently retarded the speed of retrogradation

  • PDF

Physicochemical Characteristics of CDPF according to Ash a Cleaning agent (Ash 세정제에 따른 CDPF의 물리화학적 특성)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.641-647
    • /
    • 2017
  • In order to meet the stricter emission regulations, the proportion of after-treatments for vehicles and vessels has been increasing gradually. The objective of this study is to investigate the physicochemical properties according to ash cleaning agents of CDPF for Diesel Engines. Penetrating agents with strong penetration into ash and a surfactant component to mix water and oil were prepared properly. The cleaning characteristics of S1 sample were good. Washcoat loss rate of S1 sample was lower by about 2.2% because of less KOH component and lower Na2SiO3 content. Washcoat loss rate of S4 sample with an added KOH and Na2SiO3 components by penetration agents was increased by about 13%. In terms of less than about 13% of CDPF's washcoat loss rate, it was able to reduce the harmful gas components.

Engineered Clay Minerals for Future Industries: Food Packaging and Environmental Remediation (미래산업에 적용가능한 점토 화합물: 식품포장 및 환경개선)

  • Kim, Hyoung-Jun;Oh, Jae-Min
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.35-45
    • /
    • 2016
  • Clays, which are abundant in nature and eco-friendly, have been utilized throughout human history due to their characteristic physicochemical properties. Recently, a variety of clays such as montmorillonite, kaolinite, sepiolite and layered double hydroxide with or without chemical modification have been extensively studied for potential application in industries. Clays that possess a large specific surface area, high aspect ratio, nanometer sized layer thickness and controllable surface charge could be utilized as polymer fillers after appropriate chemical modifications. These modified clays can improve mechanical and gas barrier properties of polymer materials but also provide sustained antibacterial activity to polymer films. Furthermore, engineered clays can be utilized as scavengers for chemical or biological pollutants in water or soil, because they have desirable adsorption properties and chemical specificity. In this review, we are going to introduce recent researches on engineered clays for potential applications in future industries such as food packaging and environmental remediation.

Changes in the Structural and Electrical Properties of Ti3C2Tx MXene Depending on Heat Treatment (Ti3C2Tx MXene의 열처리에 따른 구조적, 전기적 특성 변화)

  • Kim, Ja-Hyun;Noh, Jin-Seo
    • Korean Journal of Materials Research
    • /
    • v.32 no.5
    • /
    • pp.264-269
    • /
    • 2022
  • Ti3C2Tx MXene, which is a representative of the two-dimensional MXene family, is attracting considerable attention due to its remarkable physicochemical and mechanical properties. Despite its strengths, however, it is known to be vulnerable to oxidation. Many researchers have investigated the oxidation behaviors of the material, but most researches were conducted at high temperatures above 500 ℃ in an oxidation-retarding environment. In this research, we studied changes in the structural and electrical properties of Ti3C2Tx MXene induced by low-temperature heat treatments in ambient conditions. It was found that a number of TiO2 particles were formed on the MXene surface when it was mildly heated to 200 ℃. Heating the material to higher temperatures, up to 400 ℃, the phase transformation of Ti3C2Tx MXene to TiO2 was accelerated, resulting in a TiO2/Ti3C2Tx hybrid. Consequently, the metallic nature of pure Ti3C2Tx MXene was transformed to semiconductive behavior upon heat-treating at ≥ 200 ℃. The results of this research clearly demonstrate that Ti3C2Tx MXene may be easily oxidized even at low temperatures once it is exposed to air.

Review of the use of activated biochar for energy and environmental applications

  • Lee, Hyung Won;Kim, Young-Min;Kim, Seungdo;Ryu, Changkook;Park, Sung Hoon;Park, Young-Kwon
    • Carbon letters
    • /
    • v.26
    • /
    • pp.1-10
    • /
    • 2018
  • Biochar obtained from the thermal conversion of biomass has high potential as a substitute material for activated carbon and other carbon-based materials because it is economical, environmentally friendly, and carbon-neutral. The physicochemical properties of biochar can also be controlled by a range of activation methods such as physical, chemical, and hydrothermal treatments. Activated biochar can be used as a catalyst for the catalytic pyrolysis of a biomass and as an absorbent for the removal of heavy metal ions and atmospheric pollutants. The applications of biochar are also expanding not only as a key component in producing energy storage materials, such as supercapacitors, lithium ion batteries, and fuel cells, but also in carbon capture and storage. This paper reviews the recent progress on the activation of biochar and its diverse present and future applications.

Processing Optimization and Quality Characteristics of Low-Fat Yogurt Prepared with Roselle (로젤 첨가 저지방 요구르트의 제조 조건 최적화 및 품질특성)

  • Hwang, Suhjung;Jung, Eunkyung;Joo, Nami
    • Journal of the Korean Society of Food Culture
    • /
    • v.28 no.4
    • /
    • pp.392-400
    • /
    • 2013
  • The purpose of this study was to determine the optimal amounts and mixing condition of skim milk powder (A), and roselle (B) for the production of yogurt prepared with roselle. The experiment was designed according to the central composite design for estimating the response surface method, which yielded ten experimental points, including two replicates for the skim milk powder and roselle. The physicochemical and mechanical analysis of each sample, including pH (P<0.001), titratable acidity (P<0.001), color (P<0.05), viscosity (P<0.001), showed significant differences. Antioxidant properties (total phenolic content, DPPH free radical scavenging activity) and viable cell counts of lactic acid were significantly different (P<0.05). The sensory measurements were significantly different in color, flavor, sourness, texture, and overall quality (P<0.05). The optimal formulation, calculated by numerical and graphical methods, was 7.82 g of skim milk powder and 2.09 g of roselle. From findings of this study, the roselle may be used in yogurt and can be applied for other food industries.

Service life prediction of a reinforced concrete bridge exposed to chloride induced deterioration

  • Papadakis, Vagelis G.
    • Advances in concrete construction
    • /
    • v.1 no.3
    • /
    • pp.201-213
    • /
    • 2013
  • While recognizing the problem of reinforcement corrosion and premature structural deterioration of reinforced concrete (RC) structures as a combined effect of mechanical and environmental actions (carbonation, ingress of chlorides), emphasis is given on the effect of the latter, as most severe and unpredictable action. In this study, a simulation tool, based on proven predictive models utilizing principles of chemical and material engineering, for the estimation of concrete service life is applied on an existing reinforced concrete bridge (${\O}$resund Link) located in a chloride environment. After a brief introduction to the structure of the models used, emphasis is given on the physicochemical processes in concrete leading to chloride induced corrosion of the embedded reinforcement. By taking under consideration the concrete, structural and environmental properties of the bridge investigated, an accurate prediction of its service life is taking place. It was observed that the proposed, and already used, relationship of service lifetime- cover is almost identical with a mean line between the lines derived from the minimum and maximum critical values considered for corrosion initiation. Thus, an excellent agreement with the project specifications is observed despite the different ways used to approach the problem. Furthermore, different scenarios of concrete cover failure, in the case when a coating is utilized, and extreme deicing salts attack are also investigated.

Physicochemical Characterization of PET Fabrics Treated with Chitosan after Exposure to $O_2$ Low Temperature Plasma - Especially by KES evaluation - (저온 플라즈마 처리한 폴리에스테르 직물의 키토산 처리에 따른 물리화학적 특성변화 -KES평가를 중심으로-)

  • Koo Kang;Kim Sam Soo;Park Young Mi;Yu Jae Yeong;Koo Bon Shik;Yoo Seung Chun
    • Textile Coloration and Finishing
    • /
    • v.17 no.5 s.84
    • /
    • pp.26-36
    • /
    • 2005
  • This study was carried to evaluate mechanical characteristics of Poly(ethylene terephthalate) fabrics (by Kawabata evaluation system(KES)) which was systematically treated with $O_2$ low temperature plasma and chitosan acetate solution. Furthermore, surface structure was investigated by SEM, AFM, air permeability and wettability. Tensile energy(WT), shear rigidity(G) and surface roughness(MIU) properties calculated by KES-FB have increased with increasing plasma treatment time, while bending rigidity(G) and energy of compression(WC) value were decreased compared with those of the untreated. SEM photographs showed the identification of chitosan coating but did not confirm the plasma etching structure. Air permeability was decreased according to plasma treatment time with increasing concentrations of chitosan. The water absorption rate made rapid progress by chitosan treatment.