• 제목/요약/키워드: Physico-mechanical

검색결과 72건 처리시간 0.024초

과열증기 열처리 낙엽송재의 물리·역학적 성능 및 내후성능 평가 (Evaluation of Physico-mechanical Properties and Durability of Larix kaempferi Wood Heat-treated by Superheated Steam)

  • 박용건;박준호;양상윤;정현우;김현빈;한연중;장윤성;김경중;여환명
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권5호
    • /
    • pp.776-784
    • /
    • 2016
  • 본 연구에서는 pilot scale에서 과열증기를 이용하여 실대재 낙엽송 생재 각재를 열처리하고, 열처리된 낙엽송재의 다양한 물리 역학적 성능과 내후성능을 측정하였다. 또한, 이를 고온 열기 열처리한 낙엽송재의 물성과 비교하였다. 생재로부터 할렬 발생이 억제된 상태로 과열증기 열처리된 낙엽송재의 갈색부후균과 백색부후균에 대한 저항성과 종압축강도는 증가한 반면에 밀도와 평형함수율 및 수축률과 휨강도는 관행 열처리재보다 낮게 측정되었다. 과열증기 목재 열처리는 다량의 수분에 의해 열전달이 빠르고 열가수분해가 촉진되기 때문에 유사한 시간과 온도에서 열기를 이용하여 관행 열처리한 경우보다 열처리 효과가 높게 나타났다. 따라서 과열증기 열처리 방법은 생재를 할렬 없이 열처리할 수 있으며, 관행 열처리 방법보다 낮은 온도 또는 짧은 열처리 시간으로도 동일한 열처리 효과를 발현시킬 수 있다. 즉, 열처리에 소요되는 시간과 에너지를 줄일 수 있다.

Property Enhancement of SiR-EPDM Blend Using Electron Beam Irradiation

  • Deepalaxmi, R.;Rajini, V.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.984-990
    • /
    • 2014
  • Polymers are the most commonly used di-electrics because of their reliability, availability, ease of fabrication and cost. The commercial and industrial demand for advanced polymeric materials which are capable of being used in harsh environment is need of the hour. The study of the effect of electron beam irradiation on polymeric materials is an area of rapidly increasing interest. This paper discusses the resultant beneficial effects of electron beam irradiation on the SiR-EPDM blend having 50:50 composition. The changes in mechanical and electrical properties of SiR-EPDM blend which are exposed to three different doses of electron beam radiation namely 5 Mrad, 15 Mrad and 25 Mrad are presented. The irradiated blends are analyzed for their electro-mechanical and physico chemical properties. The electrical changes induced by irradiation are investigated by arc resistance, surface resistivity and volume resistivity measurements as per ASTM standards. The mechanical changes are observed by the measurement of tensile strength and elongation at break. Physico chemical investigation has been done using the FTIR, in order to investigate the irradiation induced chemical changes.

Rheological, physico-mechanical and durability properties of multi-recycled concrete

  • Rahmani, Abdessamed Azzaz;Chemrouk, Mohamed;Ammar-Boudjelal, Amina
    • Advances in concrete construction
    • /
    • 제9권1호
    • /
    • pp.9-22
    • /
    • 2020
  • The present work looks at the possibilities of recycling more than once demolished concrete as coarse aggregates, to produce new concrete. Different concrete mixes were made with substitutions of 50%, 75% and 100% of recycled concrete aggregates respectively as coarse aggregates. The physico-mechanical characterization tests carried out on the recycled concrete aggregates revealed that they are suitable for use in obtaining a structural concrete. The resulting concrete materials had rheological parameters, compressive strengths and tensile strengths very slightly lower than those of the original concrete even when 100% of two cycles recycled concrete aggregates were used. The durability of the recycled aggregates concrete was assessed through water permeability, water absorption and chemical attacks. The obtained concretes were thought fit for use as structural materials. A linear regression was developed between the strength of the material and the number of cycles of concrete recycling to anticipate the strength of the recycled aggregates concrete. From the results, it appear clear that recycling demolished concrete represents a valuable resource for aggregates supply to the concrete industry and a the same time plays a key role in meeting the challenge for a sustainable development.

제강 2차 정련 슬래그를 재활용한 칼슘설포알루미네이트(CSA) 합성 및 수화 특성 (The Synthesis and Hydraulic properties of Calcium Sulfo Aluminate(CSA) derived from Secondary Refining Slag.)

  • 서창우;김선효;고상진;김상현;조규용
    • 대한금속재료학회지
    • /
    • 제46권7호
    • /
    • pp.437-442
    • /
    • 2008
  • The synthesis and hydration of Calcium Sulfo Aluminate[$3CaO{\cdot}3Al_2O_3{\cdot}CaSO_4(C_4A_3{\overline{S}})$, CSA cement utilizing secondary steelmaking refining slags is studied for recycling the discarded steel plant wastes to meet the environmental requrations imposed on the steel industry. Raw materials of secondary refining slag, lime sludge, gypsum and bauxite were prepared to be sintered at $1,250^{\circ}C$. The sintered samples were hydrated for 1, 3 and 7 days to evaluate the mineralogical and physico-mechanical properties. The hydration products evaluated with the aid of SEM and XRD analyses confirmed the formation and the continuing growth of ettringite phase with the further hydration times, which plays a role in developing the early strength and the expansion properties of cements. The physico-mechanical properties of hydrated CSA products employing the recycled steelmaking refining slags determined in terms of compressive strength and linear expansion of hydrated products are found to be superior to those of the Ordinary Portland Cement(OPC) or the other commercial CSA cements.

Physico-mechanical Properties and Formaldehyde/TVOC Emission of Particleboards with Volcanic Pozzolan

  • Kim, Sumin;An, Jae-Yoon;Kim, Jin-A;Kim, Hee-Soo;Kim, Hyun-Joong;Kim, Hak-Gyeom
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권2호
    • /
    • pp.39-50
    • /
    • 2007
  • The purpose of this study was to investigate the physico-mechanical properties and characteristics on reduction of formaldehyde and total volatile organic compound (TVOC) emission from particleboard (PB) with added volcanic pozzolan. Pozzolan was added as a scavenger at the level of 1, 3, 5, and 10 wt.% of urea formaldehyde (UF) resin for PB manufacture. The moisture content, density, thickness swelling, water absorption and physical properties of PBs were examined. Three-point bending strength and internal bond strength were determined using a universal testing machine. Formaldehyde and TVOC were determined by desiccator and 20L small chamber methods. With increasing pozzolan content the physical and mechanical properties of the PBs were not significantly changed, but formaldehyde and TVOC emissions were decreased. Because pozzolan has a rough and irregular surface with porous form, it can be used as a scavenger for PBs at a content up to 10 wt.% without any detrimental effect on the physical and mechanical properties.

Durability of high performance sandcretes (HPS) in aggressive environment

  • Benamara, Dalila;Tebbal, Nadia;Rahmouni, Zine El Abidine
    • Advances in concrete construction
    • /
    • 제8권3호
    • /
    • pp.199-206
    • /
    • 2019
  • High performance sandcretes (HPS) are new concretes characterized by particles having a diameter less than 5 mm, as well as very high mechanical strength and durability. This work consists in finding solutions to make sandcretes with good physico-mechanical and durability properties for this new generation of micro-concrete. However, upgrading ordinary sandcrete into high performance sandcrete (HPS) requires a thorough study of formulation parameters (equivalent water/binder ratio, type of cement and its dosage, kind and amount of super plasticizer, and gravel/sand ratio). This research study concerns the formulation, characterization and durability, in a sulphate environment, of a high performance sandcrete (HPS), made from local materials. The obtained results show that the rheological properties of fresh concrete and mechanical strength differ with the mineralogy, density and grain size distribution of sands and silica fume used.

황 및 가황 촉진제의 함량에 따른 NR/BR 블렌드의 가황과 물리적·기계적 특성의 변화 (The Changes of Vulcanization and Physico-Mechanical Properties of NR/BR Blend with the Content of Sulfur and Accelerator)

  • 김완영;이대수;김윤섭;김형순;라창운
    • 공업화학
    • /
    • 제2권4호
    • /
    • pp.356-362
    • /
    • 1991
  • 가황계에 따른 NR/BR 블렌드의 물리적 기계적 특성의 변화를 가교밀도의 차이로 해석하였다. 경화제의 비율 및 함량이 증가함에 따라 가황속도 및 최대 토오크는 증가를 보였으며, 가교밀도도 증가하였다. 가교밀도의 증가에 따라 경도, 300% 모듈러스, 반발탄성 및 마모특성은 증가를 보인 반면에 발열에 의한 온도 상승 및 $60^{\circ}C$에서의 tan $\delta$는 감소를 보였다. 따라서 높은 하중이 가해지는 트럭/버스 타이어의 트레드 부위에 사용하는 경우 회전저항이 적은 semi-EV 가황계가 가장 적절한 가황 시스템으로 판단되었다.

  • PDF

Physico-chemical and mineralogical study of ancient mortars used in Harran area (Turkey)

  • Binici, Hanifi;Akcan, Mehmet;Aksogan, Orhan;Resatoglu, Rifat
    • Advances in concrete construction
    • /
    • 제5권6호
    • /
    • pp.639-658
    • /
    • 2017
  • Very limited studies have been accomplished concerning the historical structures around Harran area. Collected mortar samples from the historic structures in the area were tested to explore their mechanical, chemical and mineralogical properties. Mortar samples from three different points of each historical structure were taken and specified in accordance with the related standards taking into consideration their mechanical, chemical and mineralogical properties. By means of SEM-EDX the presence of organic fibres and calcite, quartz, plagioclase and muscovite minerals has been examined. Additionally, by means of XRF analysis, oxide ($SiO_2$, $Al_2O_3$, and $Fe_2O_3$) percentages of mortar ingredients have been specified, also. According to the test results obtained, it was confirmed that the mortars had densities ranging between $1.51-2.10g/cm^3$, porosity values ranging between 8.89-35.38% and compressive strengths ranging between 5.02-5.90 MPa. Specimen HU, which has the highest durability and lowest water absorption and porosity, was the mortar taken from the most intact building in the mosque complex. This result is most likely due to the very little fine aggregate content of HU. In contrast, HUC mortars with a small amount of fine particles and brick contents yielded slightly lower compressive strengths. The interesting point of this study is the mineralogical analysis results and especially the presence of ettringite in these historic mortars linked to the use of pozzolanic materials. Survival of these historic structures in Harran Area through centuries of use and, also, having been subjected to many earthquakes can probably be explained by these properties of the mortars.

Numerical Simulation and Forecasting of Mechanical Properties for Multi-Component Nonferrous Dispersion-hardened Powder Materials

  • Ryabicheva, Lyudmila;Usatyuk, Dmytro
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.998-999
    • /
    • 2006
  • A new mathematical simulation technique for physico-mechanical properties of multi-component powder materials is proposed in this paper. The main advantage of the technique is that finite elements representing different components are placed into a common mesh and may exchange their properties. The output data are properties of material after sintering. The technique allows us to investigate the influence of each component of a material on the properties and distribution of properties inside the sample. The comparative analysis of materials with different compositions is based on simulation results that are well concordant with the results of the laboratory experiments.

  • PDF

Graphene oxide dispersed polyvinyl chloride/alkyd green nanocomposite film: Processing and physico-mechanical properties

  • Yadav, Mithilesh;Ahmad, Sharif;Chiu, Fang-Chyou
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.246-256
    • /
    • 2018
  • Graphene oxide (GO) reinforced Polyvinyl chloride (PVC)-Waterborne Castor Alkyd (WCA) nanocomposites (PVC/WCA/GO) films were processed through solution blending technique. TGA showed that the thermal stability of PVC/WCA/GO-0.5 films was better than that of PVC/WCA blend film. With incorporation of 0.5 wt.% GO, the tensile strength and elastic modulus of the blend nanocomposite have significantly improved by about 260% and 185%, respectively, compared with neat polymer. The physicomechanical properties of these films suggest that the PVC/WCA/GO nanocomposite films may have a potential scope for their application in packaging industries. The results are supported by characterizations like FTIR, XRD, TEM and FESEM.