• Title/Summary/Keyword: Physical separation

Search Result 534, Processing Time 0.026 seconds

Separation characteristics of particles in a self-rotating type centrifugal oil purifier

  • Pyo, Young-Seok;Jung, Ho-Yun;Choi, Yoon-Hwan;Doh, Deog-Hee;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.147-153
    • /
    • 2014
  • The centrifugal oil purifier is used in an engine for lubrication and to remove impurities. The momentum needed for the rotation of the cylindrical chamber is obtained by jet injections. An impure particle in the oil is separated by the centrifugal forces moving to the inner wall of the rotating cylindrical chamber body. The dust particles are eliminated when the particles are absorbed onto the surface of the inner wall of the chamber body. The flow characteristics and the physical behaviors of particles in this centrifugal oil purifier were investigated numerically and the filtration efficiencies was evaluated. For calculations, a commercial code is used and the SST (Shear Stress Transport) turbulence model has been adopted. The MFR (Multi Frames of Reference) method is introduced to consider the rotating effect of the flows. Under various variables, such as particle size, particle density and rotating speed, the filtration efficiencies are evaluated. It has been verified that the filtration efficiency is increased with the increments in the particle size, the particle density and the rotating speed of the cylindrical chamber.

Incompressible Viscous Flow Analysis Around a Three Dimensional Minivan-Like Body (3차원 미니밴 형상 주위의 비압축성 점성 유동 해석)

  • Jung Y. R.;Park W. G.;Park Y. J.;Kim J. S.;Hong S. H.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.46-53
    • /
    • 1997
  • The flow field around a three dimensional minivan-like body has been simulated. This study solves 3-D unsteady incompressible Navier-Stokes equations on a non-orthogonal curvilinear coordinate system using second-order accurate schemes for the time derivatives, and third/second-order scheme for the spatial derivatives. The Marker-and-Cell concept is applied to efficiently solve continuity equation. A H-H type of multi-block grid system is generated around a three dimensional minivan-like body. Turbulent flows have been modeled by the Baldwin-Lomax turbulent model. To validate present procedure, the flows around the Ahmed body with 12.5° of slant angle are simulated. A good agreement with other numerical results is achived. After code validation, the flows around a mimivan-like body are simulated. The simulation shows three dimensional vortex-pair just behind body. The flow separation is also observed on the rear of the body. It has concluded that the results of present study properly agreed with physical flow phenomena.

  • PDF

Flow-Induced Vibration (FIV) Analysis of a 3D Axial Compressor Blade (3차원 축류압축기 블레이드의 유체유발진동 해석)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Yang, Guo Wei;Jung, Kyu-Kang;Kim, Kyung-Hee;Min, Dae-Gee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.652-653
    • /
    • 2009
  • In this study, flow-induced vibration (FIV) analyses have been conducted for a 3D compressor blade model. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed dynamic responses of designed compressor blades. Fluid domains are modeled using the computational grid system with local grid deforming and remeshing techniques. Reynolds-averaged Navier-Stokes equations with $\kappa-\varepsilon$ turbulence model are solved for unsteady flow problems of the rotating compressor model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D compressor blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating compressor blade.

  • PDF

Structure-property relations for polymer melts: comparison of linear low-density polyethylene and isotactic polypropylene

  • Drozdov, A.D.;Al-Mulla, A.;Gupta, R.K.
    • Advances in materials Research
    • /
    • v.1 no.4
    • /
    • pp.245-268
    • /
    • 2012
  • Results of isothermal torsional oscillation tests are reported on melts of linear low density polyethylene and isotactic polypropylene. Prior to rheological tests, specimens were annealed at various temperatures ranging from $T_a$ = 180 to $310^{\circ}C$ for various amounts of time (from 30 to 120 min). Thermal treatment induced degradation of the melts and caused pronounced decreases in their molecular weights. With reference to the concept of transient networks, constitutive equations are developed for the viscoelastic response of polymer melts. A melt is treated as an equivalent network of strands bridged by junctions (entanglements and physical cross-links). The time-dependent response of the network is modelled as separation of active strands from and merging of dangling strands with temporary nodes. The stress-strain relations involve three adjustable parameters (the instantaneous shear modulus, the average activation energy for detachment of active strands, and the standard deviation of activation energies) that are determined by matching the dependencies of storage and loss moduli on frequency of oscillations. Good agreement is demonstrated between the experimental data and the results of numerical simulation. The study focuses on the effect of molecular weight of polymer melts on the material constants in the constitutive equations.

A Study on the Physical Properties and Adhesion Characteristics of Polyurethane Resin (폴리우레탄 수지의 물성 및 접착특성에 관한 연구)

  • Kim, Young-Joon;Chang, Ki-Young;Kim, Gu-Ni;Chun, Yong-Chul;Yoo, Chong-Sun;Park, Sang-Wook
    • Elastomers and Composites
    • /
    • v.31 no.2
    • /
    • pp.104-110
    • /
    • 1996
  • The polyurethane was synthesized by the reaction of polycaprolactone diol(Mw 2000), 4,4'-diphenylmethane diisocyanate and 1,4-butanediol as the chain extender. Also, the modified polyurethane polymers based on liquid polybutadiene as a part of soft segment and dimethylolpropionic acid as a chain extender, giving polyurethane with various polarity, were synthesized. The thermal, mechanical, adhesion properties and water contact angles of the polyurethanes were examined. From the result of the water contact angle, the polarity of the acid modified PU containing 6% acid content was unchanged but mechanical and adhesion properties were improved. The water contact angles on polybutadiene modified PU films were increased with increasing polybutadiene content. The mechanical properties of the polybutadiene modified PU were higher than that of acid modified PU. However, the mechanical properties were reduced as polybutadiene content increased. The result is presumably due to phase separation between hard segment and soft segment. The peel strength of the polyurethane introduced with 5wt% polybutadiene was improved about 150% than that of unmodified PU. The same as the mechanical properties, the more polybutadiene was introduced, the lower peel strength was obtained.

  • PDF

VRML image overlay method for Robot's Self-Localization (VRML 영상오버레이기법을 이용한 로봇의 Self-Localization)

  • Sohn, Eun-Ho;Kwon, Bang-Hyun;Kim, Young-Chul;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.318-320
    • /
    • 2006
  • Inaccurate localization exposes a robot to many dangerous conditions. It could make a robot be moved to wrong direction or damaged by collision with surrounding obstacles. There are numerous approaches to self-localization, and there are different modalities as well (vision, laser range finders, ultrasonic sonars). Since sensor information is generally uncertain and contains noise, there are many researches to reduce the noise. But, the correctness is limited because most researches are based on statistical approach. The goal of our research is to measure more exact robot location by matching between built VRML 3D model and real vision image. To determine the position of mobile robot, landmark-localitzation technique has been applied. Landmarks are any detectable structure in the physical environment. Some use vertical lines, others use specially designed markers, In this paper, specially designed markers are used as landmarks. Given known focal length and a single image of three landmarks it is possible to compute the angular separation between the lines of sight of the landmarks. The image-processing and neural network pattern matching techniques are employed to recognize landmarks placed in a robot working environment. After self-localization, the 2D scene of the vision is overlaid with the VRML scene.

  • PDF

System Identification and Stability Evaluation of an Unmanned Aerial Vehicle From Automated Flight Tests

  • Jinyoung Suk;Lee, Younsaeng;Kim, Seungjoo;Hueonjoon Koo;Kim, Jongseong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.654-667
    • /
    • 2003
  • This paper presents a consequence of the systematic approach to identify the aerodynamic parameters of an unmanned aerial vehicle (UAV) equipped with the automatic flight control system. A 3-2-1-1 excitation is applied for the longitudinal mode while a multi-step input is applied for lateral/directional excitation. Optimal time step for excitation is sought to provide the broad input bandwidth. A fully automated programmed flight test method provides high-quality flight data for system identification using the flight control computer with longitudinal and lateral/directional autopilots, which enable the separation of each motion during the flight test. The accuracy of the longitudinal system identification is improved by an additional use of the closed-loop flight test data. A constrained optimization scheme is applied to estimate the aerodynamic coefficients that best describe the time response of the vehicle. An appropriate weighting function is introduced to balance the flight modes. As a result, concurrent system models are obtained for a wide envelope of both longitudinal and lateral/directional flight maneuvers while maintaining the physical meanings of each parameter.

Axenic purification and cultivation of an Arctic cyanobacterium, Nodularia spumigena KNUA005, with cold tolerance potential for sustainable production of algae-based biofuel

  • Hong, Ji-Won;Choi, Han-Gu;Kang, Sung-Ho;Yoon, Ho-Sung
    • ALGAE
    • /
    • v.25 no.2
    • /
    • pp.99-104
    • /
    • 2010
  • A psychrotolerant cyanobacterium, Nodularia spumigena KNUA005, was isolated from a cyanobacterial bloom sample collected near Dasan Station in Ny-${\AA}lesund$, Svalbard Islands during the Arctic summer season. To generate an axenic culture, the isolate was subjected to three purification steps: centrifugation, antibiotic treatment and streaking. The broad antibacterial spectrum of imipenem killed a wide range of heterotrophic bacteria, while the cyanobacterium was capable of enduring both antibiotics, the remaining contaminants that survived after treatment with imipenem were eliminated by the application of an aminoglycoside antibiotic, kanamycin. Physical separation by centrifugation and streaking techniques also aided axenic culture production. According to the cold-tolerance test, this mat-forming cyanobacterium was able to proliferate at low temperatures ranging between 15 and $20^{\circ}C$ which indicates the presence of cold-tolerance related genes in N. spumigena KNUA005. This suggests the possibility of incorporating cold-resistance genes into indigenous cyanobacterial strains for the consistent production of algae-based biofuel during the low-temperature seasons. Therefore, it is needed to determine the cold-tolerance mechanisms in the Arctic cyanobacterium in the next research stage.

Studies on the Sex Control in Swine by the Physical Treatments on spermatozoa (정자에 대한 심리적 처리에 의한 돼지의 성비조절에 관한 연구)

  • 이용빈;임경선;서국성;오성종
    • Korean Journal of Animal Reproduction
    • /
    • v.3 no.1
    • /
    • pp.36-40
    • /
    • 1979
  • This experiment was conducted to separate X-and Y-bearing spermatozoa of boar semen. The ratio of X-and Y-bearing spermatozoa to total spermatozoa included in ejaculated semen obtained from 4 boars raising at the College of Agriculture, Seoul National University and treated by the sedimentory or electrophoretic technique was estimated. For the electrophoresis, the semen specimen was placed into the co, pp.r loop electrodes in 30cc of glass tube at room temperature for 30 minutes and in order to sedimentary separation, the semen was sedimented in 5$^{\circ}C$ water for 50 minutes. The sperm fluorescent stainning technique was performed by the method of Bhattacharya etal (1976). The results obtained were as follows; 1. Average rate of B-body bearing spermatozoa in normal boar semen was 45.15${\pm}$4.20%, and no significant difference was observed between 1st (44.88${\pm}$6.41%) and 2nd (42.75${\pm}$4.17%) fraction of fractionally collected semen. 2. Spermatozoa were separated into several different fractions by sedimentation. B-body a, pp.arances from the top and bottom fraction were 53.70% and 33.43%, respectively. There were highly significant difference between the top and bottom fractions. 3. The swine spermatozoa were separated into X-and Y-bearing spermatozos by electrophoresis without interferring the sperm motility. The rates of B-body bearing spermatozoa attracted on the anode and cathode were 60.4% and 21.8%, respectively. Highly significant difference betwee two fractions was also observed.

  • PDF

Large-Scale Vortical Structures in The Developing Plane Mixing Layer Using LES

  • Seo, Taewon;Kim, Yeung-Chan;Keum, Kihyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.12-19
    • /
    • 2001
  • Study of turbulent mixing layers has been a popular subject from the point of view of both practical application and phenomenological importance in engineering field. Turbulent mixing layers can be applied in many fields where rapid transition to turbulence is desirable in order to prevent boundary layer separation or to enhance mixing. The ability to control mixing, structure and growth of the shear flow would obviously have a considerable impact on many engineering applications. In addition to practical applications, free shear flows are one of the simplest flows to understand the fundamental mechanism in the transition process to turbulence. After the discovery of large-scale vortical structure in free shear flows many researchers have investigated the physical mechanism of generation and dissipation processes of the vortical structure. This study investigated the role of the large-scale vortical structures in the turbulent mixing layer using LES(Large-Eddy Simulation). The result shows that the pairing interaction of the vortical structure plays an important role in the growth rate of a mixing layer. It is found that the turbulence quantities depend strongly on the velocity ratio. It is also found that the vorticity in the high-velocity-side can extract energy from the mean flow, while the vorticity in the low-velocity-side lose energy by the viscous dissipation. Finally the results suggest the guideline to obtain the desired flow by control of the velocity ratio.

  • PDF