• 제목/요약/키워드: Physical modeling synthesis

검색결과 27건 처리시간 0.022초

Ni0.5Zn0.4Cu0.1Fe2O4 Complex Ferrite Nanoparticles Synthesized by Chemical Coprecipitation Predicted by Thermodynamic Modeling

  • Kang, Bo-Sun;Park, Joo-Seok;Ahn, Jong-Pil;Kim, Kwang-Hyun;Tae, Ki-Sik;Lee, Hyun-Ju;Kim, Do-Kyung
    • 한국세라믹학회지
    • /
    • 제50권3호
    • /
    • pp.231-237
    • /
    • 2013
  • Thermodynamic modeling of the $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ complex ferrite system has been adopted as a rational approach to establish routes to better synthesis conditions for pure phase $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ complex ferrite. Quantitative analysis of the different reaction equilibria involved in the precipitation of $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ from aqueous solutions has been used to determine the optimum synthesis conditions. The spinel ferrites, such as magnetite and substitutes for magnetite, with the general formula $MFe_2O_4$, where M= $Fe^{2+}$, $Co^{2+}$, and $Ni^{2+}$ are prepared by coprecipitation of $Fe^{3+}$ and $M^{2+}$ ions with a stoichiometry of $M^{2+}/Fe^{3+}$= 0.5. The average particle size of the as synthesized $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$, measured by transmission electron microscopy (TEM), is 14.2 nm, with a standard deviation of 3.5 nm the size when calculated using X-ray diffraction (XRD) is 16 nm. When $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ ferrite is annealed at elevated temperature, larger grains are formed by the necking and mass transport between the $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ ferrite nanoparticles. Thus, the grain sizes of the $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ gradually increase as heat treatment temperature increases. Based on the results of Thermogravimetric Analysis (TGA) and Differential Scanning Calorimeter (DSC) analysis, it is found that the hydroxyl groups on the surface of the as synthesized ferrite nanoparticles finally decompose to $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ crystal with heat treatment. The results of XRD and TEM confirmed the nanoscale dimensions and spinel structure of the samples.

Role of e-Learning Environments in Training Applicants for Higher Education in the Realities of Large-Scale Military Aggression

  • Nataliia Bakhmat;Maryna Burenko;Volodymyr Krasnov;Larysa Olianych;Dmytro Balashov;Svitlana Liulchak
    • International Journal of Computer Science & Network Security
    • /
    • 제23권12호
    • /
    • pp.167-174
    • /
    • 2023
  • Electronic educational environments in the conditions of quarantine restrictions of COVID-19 have become a common phenomenon for the organization of distance educational activities. Under the conditions of Russian aggression, Ukrainian proof of their use is unique. The purpose of the article is to analyze the role of electronic educational environments in the process of training applicants for higher education in Ukraine in the realities of a large-scale war. General scientific methods (analysis, synthesis, deduction, and induction) and special pedagogical prognostic methods, modeling, and SWOT analysis methods were used. In the results, the general properties of the Internet educational platforms common in Ukraine, the peculiarities of using the Moodle and Prometheus platforms, and an approximate model of the electronic learning environment were discussed. The reasons for the popularity of Moodle among Ukrainian universities are analyzed, but vulnerable elements related to security are emphasized. It was also determined that the high cost of Prometheus software and less functionality made this learning environment less relevant. The conclusions state that the military actions drew the attention of universities in Ukraine to the formation of their own educational platforms. This is especially relevant for technical and military institutions of higher education.

고상법을 이용한 Y3Al5O12:Ce3+의 제조에서 BaF2가 미치는 영향 (Effect of BaF2 as a Flux in Solid State Synthesis of Y3Al5O12:Ce3+)

  • 원형석;;원창환;원형일
    • 한국재료학회지
    • /
    • 제21권11호
    • /
    • pp.604-610
    • /
    • 2011
  • The effect of $BaF_2$ flux in $Y_3Al_5O_{12}:Ce^{3+}$(YAG:Ce) formation was investigated. Phase transformation of $Y_3Al_5O_{12}$(YAG) was characterized by using XRD, SEM, and TEM-EDS, and it was revealed that the sequential formation of the $Y_4Al_2O_9$(YAM), $YAlO_3$(YAP) and $Y_3Al_5O_{12}$(YAG) in the temperature range of 1000-1500$^{\circ}C$. Single phase of YAG was revealed from 1300$^{\circ}C$. In order to find out the effect of $BaF_2$ flux, three modeling experiments between starting materials (1.5$Al_2O_3$-2.5$Y_2O_3$, $Y_2O_3$-$BaF_2$, and $Al_2O_3$-$BaF_2$) were done. These modeling experiments showed that the nucleation process occurs via the dissolution-precipitation mechanism, whereas the grain growth process is controlled via the liquid-phase diffusion route. YAG:Ce phosphor particles prepared using a proposed technique exhibit a spherical shape, high crystallinity, and an emission intensity. According to the experimental results conducted in this investigation, 5% of $BaF_2$ was the best concentration for physical, chemical and optical properties of $Y_3Al_5O_{12}:Ce^{3+}$(YAG:Ce) that is approximately 10-15% greater than that of commercial phosphor powder.

THE SYNTHESIS, PHYSICAL PROPERTY, AND THE BIOLOGICAL ACTIVITY OF NOVEL NEO-CERAMIDES

  • Kim, Duck-Hee;Lee, Bo-Seaub;Koo, Myeong-Soo;Kim, Hyun-Jun;Lee, Hae-Kwang;Park, Moon-Jae;Lee, Ok-Sub
    • 대한화장품학회지
    • /
    • 제24권3호
    • /
    • pp.6-16
    • /
    • 1998
  • Ceramides are currently emerging as the major skin care ingredients due to !heir barrier properties in the stratum corneum of the human skin. Thus, major cosmetic companies have developed synthetic ceramide analogs for their own use. In this study, several ceramide mimic compounds , new skin barrier lipids, were designed and synthesized, and their physical and biological properties were investigated to evaluate their skin care capability. Several structures were designed from the variation of hydrophobic alkyl chain and hydrophilic moiety by the use of molecular modeling software. The selected targets were synthesized, and their properties and activities were studied as the pure form, in the emulsion, or in the lamellar mixture containing cholesterol and fatty acid. Some compounds, such as 1,3-bis(N-(2-hydroxyethyl)-palmitoylamino)-2-hydroxypropane, enhanced the restoration of skin barrier damaged by SDS(sodium dodecyl sulfate), and by acetone treatment. The rate of restoration was comparable to that of natural ceramides. The synthesized compounds alleviated SDS induced skin irritation and facilitated lamellar phase liquid crystal formation. The treatment of 1,3-Dis(N-(2-hydroxyethyl)-palmitoylam ino)-2-hyd roxypropane on the acetone damaged skin revealed that the compound promoted the recovery of intercellular lipid lamellar structure of stratum corneum layer. The replacement of palmitoyl groups of the compound with shorter alkyl chain gave lower emulsion viscosity and liquid crystal density, suggesting easier formulation and poorer barrier activity. Most of the synthesized compounds were non-irritable in various toxicological tests proving that they can be safely introduced to the skin care formulations.

  • PDF

현악기의 물리적 모델링을 위한 최적의 멀티코어 프로세서 아키텍처 탐색 (Exploration of Optimal Multi-Core Processor Architecture for Physical Modeling of Plucked-String Instruments)

  • 강명수;최지원;김용민;김종면
    • 한국음향학회지
    • /
    • 제30권5호
    • /
    • pp.281-294
    • /
    • 2011
  • 물리적 모델링 기반 음 합성 알고리즘은 음 합성 시 많은 연산량을 요구하며 이는 실시간 음 합성을 저해한다. 이러한 문제를 해결하기 위해 본 논문에서는 물리적 모델링 기반 현악기 사운드 엔진을 멀티코어 프로세서에 구현하고, 사운드 엔진을 위한 최적의 멀티코어 프로세서 구조를 제안한다. 대상 현악기의 단위음을 합성하기 위해 각 프로세싱 엘리먼트 (processing element, PE)당 합성하는 샘플 (sample-per-processing element, SPE) 수를 변화시키는 실험을 통해 시스템의 성능 (system performance), 시스템 면적 효율 (area efficiency), 에너지 효율 (energy efficiency)을 각각 측정하고, 측정된 결과를 바탕으로 최적의 멀티코어 프로세서 구조를 선택하였다. 모의실험 결과, 어쿠스틱 기타는 SPE가 5,513과 2,756일 때 가장 높은 시스템 면적 효율과 에너지 효율을 보였으며, 클래식 기타는 SPE가 22,050과 5,513일 때 시스템 면적 효율과 에너지 효율이 가장 높았다. 또한 이를 이용하여 44.1 kHz의 샘플링율을 갖도록 대상 악기의 단위음을 합성한 결과 원음과 스펙트럼에서 매우 유사함을 확인할 수 있었고, 울산대학교 대학원생 및 교수 10명을 대상으로 실시한 MUSHRA 주관 청취 테스트에서도 좋은 결과를 얻었다.

Molecular gas and star formation in early-type galaxies

  • Bureau, Martin
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.65-65
    • /
    • 2011
  • Early-type galaxies represent the end point of galaxy evolution and, despite pervasive residual star formation, are generally considered "red and dead", that is composed exclusively of old stars with no star formation. Here, their molecular gas content is constrained and discussed in relation to their evolution, supporting the continuing importance of minor mergers and/or cold gas accretion. First, as part of the Atlas3D survey, the first complete, large, volume-limited survey of CO in normal early-type galaxies is presented. At least of 23% of local early-types possess a substantial amount of molecular gas, the necessary ingredient for star formation, independent of mass and environment but dependent on the specific stellar angular momentum. Second, using CO synthesis imaging, the extent of the molecular gas is constrained and a variety of morphologies is revealed. The kinematics of the molecular gas and stars are often misaligned, implying an external gas origin in over a third of all systems, more than half in the field, while external gas accretion must be shot down in clusters. Third, many objects appear to be in the process of forming regular kpc-size decoupled disks, and a star formation sequence can be sketched by piecing together multi-wavelength information on the molecular gas, current star formation, and young stars. Fourth, early-type galaxies do not seem to systematically obey all our usual prejudices regarding star formation (e.g. Schmidt-Kennicutt law, far infrared-radio continuum correlation), suggesting a greater diversity in star formation processes than observed in disk galaxies and the possibility of "morphological quenching". Lastly, a first step toward constraining the physical properties of the molecular gas is taken, by modeling the line ratios of density- and opacity-sensitive molecules in a few objects. Taken together, these observations argue for the continuing importance of (minor) mergers and cold gas accretion in local early-types, and they provide a much greater understanding of the gas cycle in the galaxies harbouring most of the stellar mass. In the future, better dust masses and dust-to-gas mass ratios from Herschel should allow to place entirely independent constraints on the gas supply, while spatially-resolved high-density molecular gas tracers observed with ALMA will probe the interstellar medium and star formation laws locally in a regime entirely different from that normally probed in spiral galaxies.

  • PDF

화학 공정 설계 및 분석을 위한 설명 가능한 인공지능 대안 모델 (Explainable Artificial Intelligence (XAI) Surrogate Models for Chemical Process Design and Analysis)

  • 고유나;나종걸
    • Korean Chemical Engineering Research
    • /
    • 제61권4호
    • /
    • pp.542-549
    • /
    • 2023
  • 대안 모델링에 대한 관심이 커진 이후 데이터 기반의 기계학습을 이용하여 비선형 화학 공정을 모사하고자 하는 연구가 지속되고 있다. 그러나 기계 학습 모델의 black box 성질로 인하여 모델의 해석 가능성에 한계는 산업 적용에 걸림돌이 되고 있다. 따라서, 모델의 정확도가 보장된 상태에서 해석력을 부여하는 개념인 설명 가능한 인공지능(explainable artificial intelligence, XAI)을 이용하여 화학 공정 분석을 시도하고자 한다. 기존의 화학 공정 민감도 분석이 변수의 민감도 지수를 계산하고 순위를 매기는 데에 그쳤다면, XAI를 이용하여 전역적, 국소적 민감도 분석뿐만 아니라 변수들 간의 상호작용에 대하여 분석하여 데이터로부터 물리적 통찰을 얻어내는 방법론을 제안한다. 사례 연구의 대상공정인 암모니아 합성 공정에 대하여 첫번째 반응기로 향하는 흐름에 대한 예열기(preheater)의 온도, 세 반응기로 향하는 cold-shot의 분배 비율을 공정 변수로 설정하였다. Matlab과 Aspen plus를 연동하여 공정 변수를 바꿔가면서 암모니아의 생산량과 세 반응기의 최고 온도에 대한 데이터를 얻었으며, tree 기반의 모델들을 훈련시켰다. 그리고 성능이 좋은 모델에 대하여 XAI 기법 중 하나인 SHAP 기법을 이용하여 민감도 분석을 수행하였다. 전역적 민감도 분석 결과, 예열기의 온도가 가장 큰 영향을 미쳤으며 국소적 민감도 분석 결과에서 생산성 향상 및 과열 방지를 위한 공정 변수들의 범위를 규정할 수 있었다. 이처럼 화학 공정의 대안 모델을 구축하고 설명 가능한 인공지능을 이용해 민감도 분석을 진행하는 방법론을 통해 공정 최적화에 대한 정량적, 정성적 피드백을 제안하는 데 도움을 줄 것이다.