• Title/Summary/Keyword: Physical and chemical properties of soil

Search Result 380, Processing Time 0.03 seconds

Soil Investigation Strategies for Soil Risk Assessment (토양위해성평가를 위한 합리적 토양조사방안 연구)

  • Jeong, Seung-Woo;An, Youn-Joo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.1
    • /
    • pp.36-43
    • /
    • 2007
  • The objectives of soil investigation in risk assessment of contaminated sites are to characterize the level and area of contamination, and provide the important physical and chemical properties of contaminated sites for later exposure assessment. This study suggests two soil investigation strategies to be considered in the soil risk assessment in Korea. First, soil investigation for characterizing soil properties is additionally required to the current investigation method that has focused on chemical analysis. Second, application of statistical concepts to soil investigation plan and soil data analysis are required for confidential decison-making on contamination and determining the exposure soil concentration. This study provides a practical soil investigation strategy to involve the current Korean soil analysis guidance with the minimum sample number required for satisfying statistical limits.

토양 유기물 분리 처리 방법이 비친수성 오염물질 흡착에 미치는 영향

  • Jeong Sang-Jo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.42-45
    • /
    • 2005
  • Accurate prediction of the fate and transport of contaminants in soils and sediments is very Important to environmental risk assessment and effective remediation of contaminated soils and sediments. The fate and transport of contaminants in subsurface are affected by geosorbents, especially carbonaceous materials including black carbon. Various physical and chemical treatment methods have been developed to separate different kinds of carbonaceous materials from soils and sediments. However, the effects of these separation methods on the properties of remaining carbonaceous materials including sorption capacity and linearity are unclear. The objective of this study is to determine if the chemical and thermal treatment methods previously used to separate different carbonaceous material fractions affect the properties of carbonaceous materials including longer term sorption capacity of hydrophobic organic contaminants. The results indicate that treatments with hydrochloric acid (HCl)/hydrofluoric acid (HF), trifluoroacetic acid (TFA), sodium hydroxide (NaOH) may not affect the sorption capacity of black carbon reference materials such as char and soot, however, treatments with acid dichromate $(K_2Cr_2O_7/H_2SO_4)$ and heat $(375^{\circ}C)$ for 24 hours in sufficient of oxygen) decrease the sorption capacity of them. The results of longer term sorption isotherm indicate that 2 days might be enough for trichloroethene (TCE) to equilibrate apparently with treated black carbon reference materials. The results suggest that acid dichromate and heat treatments may not appropriate method to investigate sorption properties of black carbon in soils and sediments.

  • PDF

The Effect of Anaerobic Fermentation Treatment of Rice or Wheat bran on the Physical and Chemical property of Plastic Film House Soil (쌀겨와 밀기울의 토양 혐기발효 처리가 시설 재배지 토양의 물리 화학성에 미치는 영향)

  • Kim, Hong-Lim;Sohn, Bo-Kyun;Jung, Kang-Ho;Kang, Youn-Ku
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.366-371
    • /
    • 2006
  • This study was done to assess the physical and chemical properties after anaerobic fermentation treatment which use rice bran or wheat bran in plastic film house soil. The results which investigates the change of soil physical property after treatment 150 days showed a dramatic difference. The physical properties of control soil were the bulk density $1.46Mg\;m^{-3}$, hardness $2.30Kg\;cm^{-3}$, hydraulic conductivity $4.8cm\;hr^{-1}$, water stable aggregate(>0.5mm) 6.7%. Of the soil which treatment the rice bran in comparison to control soil, bulk density and hardness was diminished 12% and 58%, respectively. hydraulic conductivity and water stable aggregate(>0.5mm) were increased 4.5 and 5.2 fold, respectively. And, in the soil which treatment the wheat bran, bulk density and hardness was diminished 14% and 67%, respectively. Hydraulic conductivity and water stable aggregate(>0.5mm) were increased 6.3 and 6.5 fold, respectively. $NO_3-N$ contents of the soil which treated the rice bran or wheat bran after treatment 20 days were diminished 98% in comparison to control soil. The decrease of $NO_3-N$ contents in the soil was investigated with the fact that it is caused by with increase of the soil-microbial biomass. EC of the soil which treated the rice bran were $1.48dS\;m^{-1}$ which was diminished 58% in comparison to control soil. That of soil which treated the wheat bran was increased $3.65dS\;m^{-1}$ in the early stage because of acetic and butyric acid. But it was reduced as under $2.0dS\;m^{-1}$ after treatment 30 days. As the conclusion the anaerobic fermentation treatment with rice or wheat bran was effective to the improvement of soil physical and salt accumulation of the plastic film house soil.

Comparison of Soil Physical and Chemical Properties between Coniferous and Deciduous forests in Mt. Palgong (침.활엽수림에서 산림토양의 이.화학적 특성 비교)

  • Hur, Tae-Chul;Joo, Sung-Hyun
    • Current Research on Agriculture and Life Sciences
    • /
    • v.20
    • /
    • pp.39-47
    • /
    • 2002
  • This study was carried out in order to produce useful material for the forest multiple use and forest protection by soil physico-chemical analysis of studied area in Mt. Palgong. The results of soil physico-chemical analysis and statistical analysis represented as following 2 points. 1. Soil depth was in the range of average 61.1 cm and soil texture was loamy sand and sandy loam except Donghwasa area. The part of solid phase and gaseous phase were higher than other areas, but liquid phase was less in verse. Soil water content was in an average 49.5%, penetrability was average $1.95{\times}E^{-2}cm/sec$ and the average of soil hardness was $1.64Kg/cm^2$. This data showed that soil water content, penetrability and soil hardness were good at Mt. Palgong forest soils. 2. Soil pH was the range of 3.4 to 6.0, organic carbon content was 2.8% that is nearly mean of the Korea brown forest soils, total N content is somewhat smaller than that of other places, and total average C/N ratios was 13.9. Average available $P_2O_5$ concentration was 5.05 mg/kg that is lower than that of any others. The concentration of available P of coniferous forests is higher than that of deciduous forests. Exchangeable cations content is similar to those of the Korea brown forest soil and the order of the cation content extent is $Ca^{2+}$ > $Mg^{2+}$ > $Na^+$ > $K^+$.

  • PDF

The Measurement of Soil Conditioning Effects of Organic Materials (유기물의 토양 개량 효과 측정)

  • 주영규
    • Asian Journal of Turfgrass Science
    • /
    • v.7 no.1
    • /
    • pp.13-18
    • /
    • 1993
  • Much attention has been given recently to solve the environmental contamination in golf courses Changing to culture practice rather than chemical practice that depends on pesticides and fertilizers is a hot issue in golf courses or grasslands. Organic soil conditioners improve soil-plant envirormental conditions rich in physical properties. In this study, measuring systems to evaluate soil conditioning effects were set up for on-site purpose. After establishing the methodology for evaluating soil conditioner effects, 2 kinds of organic conditioners were rested for examination. The systems for the methodology included a set of simulating equipment for field capacity, an impact type soil column compactor, and an infiltration-percolation system. Test results using the systems showed bulk density and infiltration rate of mixed soil were decreased at highter rates of conditioner, but total porocities were increased. Increased porocities were most capillary pore space which has a positive effect on soil water potential. The systems and methodology in this study seem to have an efficiency to measure the effects of soil conditioner on site purpose.

  • PDF

Impact of Biochar Particle Shape and Size on Saturated Hydraulic Properties of Soil

  • Lim, Tae-Jun;Spokas, Kurt
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • BACKGROUND: Different physical and chemical properties of biochar, which is made out of a variety of biomass materials, can impact water movement through amended soil. The objective of this research was to develop a decision support tool evaluating the impact of the shape and the size distribution of biochar on soil saturated hydraulic conductivity ($K_{sat}$). METHODS AND RESULTS: Plastic beads of different size and morphology were compared with biochar to assess impacts on soil $K_{sat}$. Bead and biochar were added at the rate of 5% (v/w) to coarse sand. The particle size of bead and biochar had an effect on the $K_{sat}$, with larger and smaller particle sizes than the original sand grain (0.5 mm) decreasing the $K_{sat}$ value. The equivalent size bead or biochar to the sand grains had no impact on $K_{sat}$. The amendment shape also influenced soil hydraulic properties, but only when the particle size was between 3-6 mm. Intra-particle porosity had no significant influence on the $K_{sat}$ due to its small pore size and increased tortuosity compared to the inter-particle spaces (macro-porosity). CONCLUSION: The results supported the conclusion that both particle size and shape of the amended biochar impacted the $K_{sat}$ value.

Soil Properties and Growth and Yield of Rice Affected by Compost, Rice Straw and Hairy Vetch (퇴비, 볏짚, 헤어리베치 시용이 수도의 생육 및 토양에 미치는 영향)

  • Lee, Yong-Hwan;Lee, Sang-Min;Sung, Jwa-Kyung;Han, Hee-Suk;Ahn, Jong-Woong;Kwak, Chang-Gkil;Kim, Wan-Seok
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.3
    • /
    • pp.397-404
    • /
    • 2011
  • This experiment was performed to study growth and yield of rice (cv. Dongjinbyeo) and soil properties affected by the application of rice straw, compost, and hairy vetch. An application of rice straw and compost led to the decrease in plant heights and tillers compared with chemical fertilizer whereas hairy vetch application resulted in slight increase. Panicle no per plant was the highest in chemical fertilizer and there was no difference among organic matters. Grain per panicle was no difference among chemical fertilizer, rice straw, and compost whereas was the lowest in hairy vetch application. The 1,000 grain weights did not show any statistic difference and the ripened rate was enhanced in all treatments of organic sources compared with chemical fertilizer. Therefore, an index of rice yield of compost, rice straw, and hairy vetch to chemical fertilizer (100%) was 77, 72, and 103%, respectively. In addition, an application of organic sources led to the increase of soil pore space and this contributed to the improvement of soil physical property.

Relationship Between Soil Water-Stable Aggregates and Physico-chemical Soil Properties (토양 내수성 입단과 토양특성과의 관계)

  • Hyun, Byung-Keun;Jung, Sug-Jae;Song, Kwan-Cheol;Sonn, Yeon-Kyo;Jung, Won-Kyo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.57-63
    • /
    • 2007
  • Soil aggregation has been considered as an important factor not only for increasing soil productivity and soil quality but also improving nutrient use availability and water use efficiency. However, the relationship between soil aggregation and soil properties hasn't well reported for Korean soils. Objective of this research was to identify the relationship among soil water-stable aggregate (WSA), soil properties and soil dispersion ratio. Soil samples were analyzed for water-stable aggregate, Middleton's dispersion ratio, and soil physical and chemical properties. Water-stable aggregate was significantly correlated to soil textural properties, soil organic matter, and exchangeable cations. Middleton's dispersion ratio was significantly correlated with water-stable aggregate ($r=-0.76^{***}$). Regression equation for water-stable aggregate was estimated by Middleton's dispersion ratio (Y=-0.79X + 96.49; $r^2=0.58^{**}$). In this research, we conclude that water-stable aggregate was significantly correlated with some soil properties and was able to be estimated by rapid and easily measurable Middleton's dispersion ratio.

Experimental Study for Irrigation Water Requrements in the Reclaimed Paddy Field (간척답의 관개용수량 산정을 위한 제염시험연구)

  • 손재권;구자웅;최진규;송재도
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.192-199
    • /
    • 1999
  • In order to make the reasonable irrigation planin the reclaimed paddy fields, the estimation of irrigation water requirements by soil textures and water management methods for the normal growth of crops is very important. This study was carried out to determine leaching water requirements before cultivating crops. For the purposes of this study, the physical and chemical properties of soil sampels used in the desalinication experiments were analyzed and change of salinity by supplying water and leaching water were investigated in the experimental field with lysimeters.

  • PDF

Mulching Materials as Yield Booster for Sustainable Mungbean Production

  • Kim Hee-Jung;Lee Ho-Yong
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.4
    • /
    • pp.383-389
    • /
    • 2005
  • The effect of different mulching materials on mungbean production was studied. The general objective was to assess the ecological effects of mulching materials in sustainable mungbean production. Specifically, the study aimed to determine the effects of different mulching materials on the chemical, physical and biological soil properties, on weed control and yield, and to identify mulching materials that are environmentally friendly in mungbean production. The experiment was conducted at the Fruit and Vegetables Seeds Center, Science City of $Mu/tilde{n}oz$, Nueva Ecija, Philippines from May to July 2004. The initial soil chemical properties were: pH of 6.4, 2.0 percent organic matter content, 0.10 percent total nitrogen, 22 ppm phosphorus, and 370 ppm available potassium. The soil microbial loads were $8\times10^4\;CFU\;g^{-1}$ for bacteria and $14\times10^4\;CFU\;g^{-1}$ for fungi. Mushroom spent mulch increased soil organic matter with an average of 3.13 percent, nitrogen with an average of 0.16 percent and the highest number of bacterial count with $3.4\times10^8\;CFU\;g^{-1}$. Use of mulch, except rice straw mulch, generally increased mungbean yield. The best mulching material for high yield production of mungbean was black polyethylene plastic film, although environmentally unfriendly.