• Title/Summary/Keyword: Physical absorption

Search Result 958, Processing Time 0.032 seconds

Bioethanol Production from Macroalgal Biomass (해조류 바이오매스를 이용한 바이오에탄올 생산기술)

  • Ra, Chae Hun;Sunwoo, In Young;Kim, Sung-Koo
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.976-982
    • /
    • 2016
  • Seaweed has high growth rate, low land usage, high CO2 absorption and no competition for food resources. Therefore, the use of lignin-free seaweed as a raw material is arising as a third generation biomass for bioethanol production. Various pretreatment techniques have been introduced to enhance the overall hydrolysis yield, and can be categorized into physical, chemical, biological, enzymatic or a combination. Thermal acid hydrolysis pretreatment is one of the most popular methods to attain high sugar yields from seaweed biomass for economic reasons. At thermal acid hydrolysis conditions, the 3,6-anhydro-galactose (AHG) from biomass could be converted to 5-hydroxymethylfurfural (HMF), which might inhibit the cell growth and decrease ethanol production. AHG is prone to decomposition into HMF, due to its acid-labile character, and subsequently into weak acids such as levulinic acid and formic acid. These inhibitors can retard yeast growth and reduce ethanol productivity during fermentation. Thus, the carbohydrates in seaweed require effective treatment methods to obtain a high concentration of monosaccharides and a low concentration of inhibitor HMF for ethanol fermentation. The efficiency of bioethanol production from the seaweed biomass hydrolysate is assessed by separate hydrolysis and fermentation (SHF). To improve the efficiency of the ethanol fermentation of mixed monosaccharides, the adaptation of yeast to high concentration of sugar could make simultaneous utilization of mixed monosaccharides for the production of ethanol from seaweed.

Mathematical Modeling of Degree of Hydration and Adiabatic Temperature Rise (콘크리트의 수화도 및 단열온도상승량 예측모델 개발)

  • 차수원
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.118-125
    • /
    • 2002
  • Hydration is the main reason for the growth of the material properties. An exact parameter to control the chemical and physical process is not the time, but the degree of hydration. Therefore, it is reasonable that development of all material properties and the formation of microstructure should be formulated in terms of degree of hydration. Mathematical formulation of degree of hydration is based on combination of reaction rate functions. The effect of moisture conditions as well as temperature on the rate of reaction is considered in the degree of hydration model. This effect is subdivided into two contributions: water shortage and water distribution. The former is associated with the effect of W/C ratio on the progress of hydration. The water needed for progress of hydration do not exist and there is not enough space for the reaction products to form. The tatter is associated with the effect of free capillary water distribution in the pore system. Physically absorption layer does not contribute to progress of hydration and only free water is available for further hydration. In this study, the effects of chemical composition of cement, W/C ratio, temperature, and moisture conditions on the degree of hydration are considered. Parameters that can be used to indicate or approximate the real degree of hydration are liberated heat of hydration, amount of chemically bound water, and chemical shrinkage, etc. Thus, the degree of heat liberation and adiabatic temperature rise could be determined by prediction of degree of hydration.

Simulation of the High Frequency Hyperthermia for Tumor Treatment (종양치료용 고주파 열치료 인체적용 시뮬레이션)

  • Lee, Kang-Yeon;Jung, Byung-Geun;Kim, Ji-won;Park, Jeong-Suk;Jeong, Byeong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.3
    • /
    • pp.257-263
    • /
    • 2018
  • Hyperthermia supplies RF high-frequency energy above 1MHz to the tumor tissue through the electrodes. And the temperature of the tumor tissue is increased to $42^{\circ}C$ or more to cause thermal necrosis. A mathematical model can be derived a human body model for absorption and transmission of electromagnetic energy in the human model and It is possible to evaluate the distribution of temperature fields in biological tissues. In this paper, we build the human model based on the adult standard model of the geometric shape of the 3D model and use the FVM code. It is assumed that Joule heat is supplied to the anatomical model to simulate the magnetic field induced by the external electrode and the temperature distribution was analyzed for 0-1,200 seconds. As a result of the simulation, it was confirmed that the transferred energy progressively penetrates from the edge of the electrode to the pulmonary tumors and from the skin surface to the subcutaneous layer.

Effect of Solvents Washing on Chemical and Physical Properties of Dried Soymilk Residue (용매처리에 의해 건조(乾燥)된 두유(豆乳)비지의 이화학적 성질(性質)에 관한 연구(硏究))

  • Kim, W.J.;Kim, D.H.;Oh, H.I.
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.261-266
    • /
    • 1984
  • Soymilk residue was washed separately with acetone, ethanol, isopropyl alcohol and n-hexane, and then dried at $45^{\circ}C$. The dried residues were evaluated for drying rate, color and chemical and functional properties. Washing with acetone resulted in the shortest drying time (1hr) and the highest in protein content (48.8%) and in Hunter 'L' value. The dried residues after treatment with acetone and alcohols showed relatively high values of 4.3-4.7g/g and 8.5-8.7g/g in oil and water absorption, respectively. Addition of the acetone treated residue to wheat flour at a level of 10% affected little in Amylograph viscosity while those treated with other solvents caused a significant decrease in the viscosity.

  • PDF

Evaluation on the Performance of Coating Materials for Improving the Durability of Concretes (콘크리트의 내구성 증진을 위한 코팅재의 성능 평가)

  • Kim, Sung-Soo;Choi, Choon-Sik;Nam, Yong-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.99-107
    • /
    • 2003
  • Normally coating is used a method for protecting reinforced concrete. For this purpose, organic as well as inorganic coatings are used. The advantages of inorganic coatings are lower absorption of UV, non-burning etc. On the other hand, organic coatings have the advantage of low permeability of $CO_2$, $SO_2$ and water. Organic coatings provide better protection for reinforced concrete. However, in organic coatings such as epoxy, urethane and acryl, long-term adhesive strength is reduced and the formed membrane of those is blistered by various causes. Also when organic coatings are applied to the wet surface of concrete, they have a problem with adhesion. So, we developed coating material, WGS-Eco which was hybridized with polymer and cement based material to protect concrete structures and solve problems of organic coatings. This study was conducted an comparative evaluation on physical and durable performance of developed coating material and previously used coating materials. As a result, the performance of developed coating material was not inferior to organic coating materials. So, the developed coating material was considered as a suitable coating material which had advantages of inorganic and organic coatings for protecting concrete.

Quality Characteristics of White Pan Breads Prepared with Various Salts (소금의 종류를 달리한 식빵의 품질 특성)

  • Kim, Hyeog;Choi, Cha-Ran;Ham, Kyung-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.1
    • /
    • pp.72-80
    • /
    • 2007
  • This study was carried out to investigate the effects of various salts on the physical and fermentative characteristics of doughs and on the quality of white pan breads produced using purified salt, Korean solar salt, Chinese solar salt, Mexican solar salt, washed and dehydrated salt, roasted salt, and bamboo salt. In farinogram patterns, dough prepared using the purified salt had the highest water absorption. Extensograms showed that the resistances and resistance/extensibility ratios of the doughs with the solar salts were higher than those with the purified salt. In amylograms, the dough with the bamboo salt had the highest viscosity value. A specific volume was the smallest in the bread with the Korean solar salt (4.11 mL/g), while the largest with the Mexican solar salt (4.85 mL/g). A baking loss rate of the bread prepared with the Korean solar salt (10.34%) was less compared to other samples (10.91 $\sim$ 11.65%). The crust of the bread added with the Korean solar salt showed higher L value and lower a value while its crumb showed the highest b value. A sensory evaluation indicated that significant differences in some characteristics of the breads were observed in the breads prepared with the Korean solar salt and Mexican solar salt. However, flavor, taste, and overall acceptability showed no significant differences among all breads prepared with different salts.

Adsorption Characteristic of Brownish Dark Colored Compounds from the Hot Water Extract of Auricularia auricula Fruit Body (흑목이 버섯 자실체의 열수추출물로부터 흑갈색 색소 성분의 흡착 특성)

  • Kim, Hyeon-Min;Hur, Won;Lim, Kun Bin;Lee, Shin-Young
    • Food Engineering Progress
    • /
    • v.13 no.2
    • /
    • pp.138-146
    • /
    • 2009
  • The crude polysaccharide fraction from fruit body of Auricularia auricula were obtained by using hot water extraction and ethanol precipitation. As the crude polysaccharide fraction contained the brownish dark colored compounds, the adsorption study of pigments from the crude polysaccharide using activated carbon was carried out. The pigment compounds showed an absorption characteristic with $\lambda_{max}$ of 230 nm and the absorbance at 230 nm was taken as color intensity. Adsorption capacity of pigment depended on increase of the activated carbon to sample loading ratio. The adsorption capacity increased with increase of pH and temperature in the pH range of 3.0-7.0 and temperature range of 25-40$^{\circ}C$, but decreased in the temperature range of 40-70$^{\circ}C$. The optimum capacity was obtained at addition of 16.7 mg activated carbon per mL sample solution (concentration = 3 mg/mL) at pH of 7.0 and temperature of 40$^{\circ}C$. Treatment for 10 min was sufficient to achieve the 80% decolorization and 1.25 fold purification of polysaccharide. Langmuir isotherm and pseudo second-order kinetic model provided the best fitting for adsorption of the brownish dark colored compounds onto powdered active carbon. The activation energies of adsorption from the Langmuir isotherm parameter in the ranges of 25-40$^{\circ}C$ and 40-70$^{\circ}C$ was -2.54 and 4.38 kcal/g, respectively. The results of low activation energy also indicated that the adsorption process was a physical adsorption which was controlled by diffnsion.

Sensitivity of COMS/GOCI Measured Top-of-atmosphere Reflectances to Atmospheric Aerosol Properties (COMS/GOCI 관측값의 대기 에어러솔의 특성에 대한 민감도 분석)

  • Lee, Kwon-Ho;Kim, Young-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.559-569
    • /
    • 2008
  • The Geostationary Ocean Color Imager (GOCI) on board the Communication Ocean Meteorological Satellite (COMS), the first geostationary ocean color sensor, requires accurate atmospheric correction since its eight bands are also affected by atmospheric constituents such as gases, molecules and atmospheric aerosols. Unlike gases and molecules in the atmosphere, aerosols can interact with sunlight by complex scattering and absorption properties. For the purpose of qualified ocean remote sensing, understanding of aerosol-radiation interactions is needed. In this study, we show micro-physical and optical properties of aerosols using the Optical Property of Aerosol and Cloud (OPAC) aerosol models. Aerosol optical properties, then, were used to analysis the relationship between theoretical satellite measured radiation from radiative transfer calculations and aerosol optical thickness (AOT) under various environments (aerosol type and loadings). It is found that the choice of aerosol type makes little different in AOT retrieval for AOT<0.2. Otherwise AOT differences between true and retrieved increase as AOT increases. Furthermore, the differences between the AOT and angstrom exponent from standard algorithms and this study, and the comparison with ground based sunphotometer observations are investigated. Over the northeast Asian region, these comparisons suggest that spatially averaged mean AOT retrieved from this study is much better than from standard ocean color algorithm. Finally, these results will be useful for aerosol retrieval or atmospheric correction of COMS/GOCI data processing.

Preparation and Characterization of Sponge Using Demineralized Bone Particle (탈미네랄화된 골분을 이용한 스폰지의 제조 및 특성 분석)

  • Jang, Ji-Wook;Baek, Mi-Ock;Kim, Soon-Hee;Choi, Jin-Hee;Yang, Jae-Chan;Hong, Hyun-Hye;Hong, Hee-Kyung;Rhee, John-M.;Min, Byoung-Hyun;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.104-110
    • /
    • 2009
  • Demineralized boneparticle (DBP) has been widely used as and a powerful promoter of new bone growth. In this study, DBP sponges were chemically crosslinked and characterized for the potential application of tissue engineered scaffolds. The DBP sponges prepared by crosslinking with EDC. 0.1, 0.2 or 0.3% pepsin was applied to DBP dissolved in 3% (v/v) acetic acid aqueous solution for 48 hrs. The prepared sponges were crosslinked by 1, 5, 10, 50 or 100 mM of EDC solution concentration and then were lyophilized. The DBP sponges were characterized by SEM, FT-IR and DSC and analyzed in terms of their porosity and water absorption ability. The cellular viability and proliferation were assayed by MTT assay. Our investigation revealed that 0.2$\sim$0.3% of pepsin and 50$\sim$100 mM of EDC produced DBP sponges with good physical characteristics. In conclusion, DBP sponge prepared under these conditions is potentially useful for the applications of tissue construction.

The Effects of Fibular Repositioning Taping on Joint Angle and Joint Stiffness of the Lower Extremity in Sagittal Plane during a Drop Landing (낙하 착지 시 FRT가 하지의 관절의 시상각과 강직도에 미치는 효과)

  • Jun, Hyung-pil
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.4
    • /
    • pp.276-282
    • /
    • 2021
  • Objective: To investigate effects of Fibular Repositioning Taping (FRT) on lower extremity joint stiffness and angle during drop-landing. Method: Twenty-eight participants (14 healthy, 14 with chronic ankle instability [CAI]) performed drop-landings from a 60 cm box; three were performed prior to tape application and three were performed post-FRT. Three-dimensional kinematic and kinetic data were collected using an infrared optical camera system (Vicon Motion Systems Ltd. Oxford, UK) and force-plate (AMTI, Watertown, MA). Joint stiffness and sagittal angle of the ankle, knee, and hip were analyzed. Results: The hip [Healthy: p<.05; M ± SD: 29.43 ± 11.27 (pre), 33.04 ± 12.03 (post); CAI: p<.05; M ± SD: 31.45 ± 9.70 (pre), 32.29 ± 9.85 (post)] and knee [Healthy: p<.05; M ± SD: 53.44 ± 8.09 (pre), 55.13 ± 8.36 (post); CAI: p<.05; M ± SD: 53.12 ± 8.35 (pre), 55.55 ± 9.81 (post)] joints demonstrated significant increases in sagittal angle after FRT. A significant decrease in joint angle was found at the ankle [Healthy: p<.05; M ± SD: 56.10 ± 3.71 (pre), 54.09 ± 4.31 (post); CAI: p<.05; M ± SD: 52.80 ± 6.04 (pre), 49.86 ± 10.08 (post)]. A significant decrease in hip [Healthy: p<.05; M ± SD: 1549.16 ± 517.53 (pre), 1272.48 ± 646.73 (post); CAI: p<.05; M ± SD: 1300.42 ± 595.55 (pre), 1158.27 ± 550.58 (post)] and knee [Healthy: p<.05; M ± SD: 270.12 ± 54.07 (pre), 239.13 ± 64.70 (post); CAI: p<.05; M ± SD: 241.58 ± 93.48 (pre), 214.63 ± 101.00 (post)] joint stiffness was found post-FRT application, while no difference was found at the ankle [Healthy: p>.05; M ± SD: 57.29 ± 17.04 (pre), 59.37 ± 18.30 (post); CAI: p>.05; M ± SD: 69.15 ± 17.63 (pre), 77.24 ± 35.05 (post)]. Conclusion FRT application decreased joint angle at the ankle without altering ankle joint stiffness. In contrast, decreased joint stiffness and increased joint angle was found at the hip and knee following FRT. Thus, participants utilize an altered shock absorption mechanism during drop-landings following FRT. When compared to previous research, the joint kinematics and stiffness of the lower extremity appear to be different following FRT versus traditional ankle taping.