• Title/Summary/Keyword: Physical absorption

Search Result 968, Processing Time 0.03 seconds

Effect of Physical Characteristics of Emulsion Asphalt and Aggregate on Performance of Chip Seal Pavements (유화아스팔트 바인더와 골재 특성이 칩씰 포장의 공용성에 미치는 영향 연구)

  • Hong, Ki Yun;Kim, Tae Woo;Lee, Hyun Jong;Park, Hee Mun;Ham, Sang Min
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.65-71
    • /
    • 2013
  • PURPOSES : The objective of this study is to evaluate the effect of physical characteristics of emulsion asphalt and aggregate on performance of chip seal pavements. METHODS : In order to evaluate the performance of chip seal materials, the sweep tests and Vialit Plate Shock tests were conducted on the mixtures with five emulsion asphalt binders and three aggregate types. The sweep tests was intended to investigate the change of bonding properties between emulsion asphalt and aggregate with curing time. The Vialit Plate Shock test was used to evaluate the bonding properties of chip seal materials at low temperatures. RESULTS : Results from sweep tests showed that polymer modified emulsion asphalt can reduce the curing time by 1.5 hour comparing with typical emulsion asphalt. It is also found that the Flakiness Index of aggregates and absorption rate of binder are the major factors affecting the bonding properties of chip seal materials. The Vialit Plate Shock test results showed that the average aggregate loss of CRS-2 is ten times higher than CRS-2P No.2 indicating that the use of polymer additives in emulsion asphalt can improve the performance of chip seal materials in low temperature region. CONCLUSIONS : The use of polymer in emulsion asphalt can decrease the curing time of chip seal materials and increase the bonding properties between aggregates and asphalt binder. It is also concluded that the lower Flakiness Index and absorption rate of aggregates can improve the performance of chip seal pavement.

A Study on Ion Extraction Characteristics of Ceramics from Marine Archaeological Sources by the Saturated Solution Humidity System (포화염용액 습도시스템에 의한 수중 발굴 도자기의 이온용출 특성 연구)

  • Nam, Byeongjik;Jang, Sungyoon
    • Journal of Conservation Science
    • /
    • v.29 no.4
    • /
    • pp.421-435
    • /
    • 2013
  • The purpose of this study is to suggest environmental guidelines for the conservation of ceramics excavated from underwater. Accordingly, the conditional change of the soluble salt on surface of the excavated ceramics was examined by changing the relative humidity. Examining the relative ratio [high humidity(RH70%+RH80%)/low humidity(RH20%+ RH40%)] for 24 weeks using accumulated conductivity(${\mu}s/cm$), the result showed that the amount of ion elution increased more in high humidity than in low humidity. In particular, the ion elution increased significantly within the celadon sample. In addition, comparing the accumulated conductivity and physical characteristics of the samples in high humidity, the results indicated that the amount of the ion elution is proportioned to the increased rate of the sample's absorption capacity and porosity. Ceramics excavated from underwater has risks of the secondary physical and chemical attacks from remaining salts. Therefore, it is suggested these ceramics be stored in a storage which maintains proper temperature and low humidity conditions. Also, the collections need to be pre-classified according to the properties of the materials.

The Effects of CO2 Injection and Barrel Temperatures on the Physiochemical and Antioxidant Properties of Extruded Cereals

  • Thin, Thazin;Myat, Lin;Ryu, Gi-Hyung
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.3
    • /
    • pp.271-280
    • /
    • 2016
  • The effects of $CO_2$ injection and barrel temperatures on the physiochemical and antioxidant properties of extruded cereals (sorghum, barley, oats, and millet) were studied. Extrusion was carried out using a twin-screw extruder at different barrel temperatures (80, 110, and $140^{\circ}C$), $CO_2$ injection (0 and 500 mL/min), screw speed of 200 rpm, and moisture content of 25%. Extrusion significantly increased the total flavonoid content (TFC) of extruded oats, and ${\beta}$-glucan and protein digestibility (PD) of extruded barley and oats. In contrast, there were significant reductions in 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, PD of extruded sorghum and millet, as well as resistant starch (RS) of extruded sorghum and barley, and total phenolic content (TPC) of all extrudates, except extruded millet. At a barrel temperature of $140^{\circ}C$, TPC in extruded barley was significantly increased, and there was also an increase in DPPH and PD in extruded millet with or without $CO_2$ injection. In contrast, at a barrel temperature of $140^{\circ}C$, the TPC of extruded sorghum decreased, TFC of extruded oats decreased, and at a barrel temperature of $110^{\circ}C$, PD of extruded sorghum without $CO_2$ decreased. Some physical properties [expansion ratio (ER), specific length, piece density, color, and water absorption index] of the extrudates were significantly affected by the increase in barrel temperature. The $CO_2$ injection significantly affected some physical properties (ER, specific length, piece density, water solubility index, and water absorption index), TPC, DPPH, ${\beta}$-glucan, and PD. In conclusion, extruded barley and millet had higher potential for making value added cereal-based foods than the other cereals.

Strength and Durability Evaluation of Recycled Aggregate Concrete

  • Yehia, Sherif;Helal, Kareem;Abusharkh, Anaam;Zaher, Amani;Istaitiyeh, Hiba
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.2
    • /
    • pp.219-239
    • /
    • 2015
  • This paper discusses the suitability of producing concrete with 100 % recycled aggregate to meet durability and strength requirements for different applications. Aggregate strength, gradation, absorption, specific gravity, shape and texture are some of the physical and mechanical characteristics that contribute to the strength and durability of concrete. In general, the quality of recycled aggregate depends on the loading and exposure conditions of the demolished structures. Therefore, the experimental program was focused on the evaluation of physical and mechanical properties of the recycled aggregate over a period of 6 months. In addition, concrete properties produced with fine and coarse recycled aggregate were evaluated. Several concrete mixes were prepared with 100 % recycled aggregates and the results were compared to that of a control mix. SEM was conducted to examine the microstructure of selected mixes. The results showed that concrete with acceptable strength and durability could be produced if high packing density is achieved.

An Overview of Remote Sensing of Chlorophyll Fluorescence

  • Xing, Xiao-Gang;Zhao, Dong-Zhi;Liu, Yu-Guang;Yang, Jian-Hong;Xiu, Peng;Wang, Lin
    • Ocean Science Journal
    • /
    • v.42 no.1
    • /
    • pp.49-59
    • /
    • 2007
  • Besides empirical algorithms with the blue-green ratio, the algorithms based on fluorescence are also important and valid methods for retrieving chlorophyll-a concentration in the ocean waters, especially for Case II waters and the sea with algal blooming. This study reviews the history of initial cognitions, investigations and detailed approaches towards chlorophyll fluorescence, and then introduces the biological mechanism of fluorescence remote sensing and main spectral characteristics such as the positive correlation between fluorescence and chlorophyll concentration, the red shift phenomena. Meanwhile, there exist many influence factors that increase complexity of fluorescence remote sensing, such as fluorescence quantum yield, physiological status of various algae, substances with related optical property in the ocean, atmospheric absorption etc. Based on these cognitions, scientists have found two ways to calculate the amount of fluorescence detected by ocean color sensors: fluorescence line height and reflectance ratio. These two ways are currently the foundation for retrieval of chlorophyll-a concentration in the ocean. As the in-situ measurements and synchronous satellite data are continuously being accumulated, the fluorescence remote sensing of chlorophyll-a concentration in Case II waters should be recognized more thoroughly and new algorithms could be expected.

Varietal Variations in Physicochemical Characteristics and Amylopectin Structure of Grain in Glutinous Rice

  • Choi, Hae-Chune;Hong, Ha-Cheol;Kim, Yeon-Gyu;Nahm, Baek-Hie
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.207-213
    • /
    • 1999
  • Thirty-eight glutinous rice varieties were classified into nine groups on the scatter diagram by the upper two principal components (56% contribution to the total information) based on eleven physicochemical characteristics including the viscograms and physical properties of cooked rice. The first principal component was the factor mainly associated with the viscogram characteristics of rice flour emulsion and the second was the factor chiefly related to the physical properties of cooked rice and water absorbability of rice grain. Indica glutinous rices were clearly distinguished from japonica ones by the first principal component score. Javanica glutinous rices were widely distributed on the intermediate zone between indica and japonica or on several japonica rice groups. Significant positive or negative correlations were found among water absorption rates of rice grain, physical properties of cooked rice, and viscogram characteristics of rice flour. Especially in japonica glutinous rices, the breakdown and setback viscosities of rice flour were closely associated with the alkali digestion value of milled rice and the stickiness of cooked rice. The frequency ratio of short glucose chains (A-chain) to intermediate glucose chains (B-chain), the ratio of B- chains to long glucose chains (C-chain) and the relative frequency of A- or B-chain fractions representing the amylopection structure of rice starch was closely associated with the breakdown and setback viscosities of rice flour.

  • PDF

Strength Estimation of Ready-Mixed Concrete Using Crushed Sand (부순모래를 사용한 레디믹스트 콘크리트의 배합설계 및 강도추정방법)

  • Suh, Jin-Kook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.45-52
    • /
    • 1999
  • It is difficult to keep the balance of supply and demand for natural aggregates in recent years, because natural resources have become to be almost exhausted. Crushed stone is already used for coarse aggregate instead of river gravel at present. Now, crushed sand or sea sand should be used for fine aggregate, because natural sand also has been exhausted with a few exceptions around Nakdong River. The sea sand has a lot of problems which are the corrosion of reinforcement bars, the investment of facility for cleansing salt and the cost increase due to the insufficiency of industrial water. Therefore, it is necessary to produce and to utilize the crushed sand very actively, but some material properties which are related to water absorption, strength and chemical durability, prevent from determining the generalized criteria because its rocks make much differences in its physical and chemical characteristics. In this paper, fundamental physical properties of crushed sand, which comes from Daegu Subway construction fields, have been investigated for the usability on basic material of concrete. The optimum replacement ratio and the strength estimation method of crushed sand replacing natural sand also have been presented here through the compressive strength test of ready-mixed concrete cylinders.

  • PDF

Statistical Studies on the Physical Parameters and Oscillations of Sunspots and Flares

  • Cho, Il-Hyun;Cho, Kyung-Suk;Kim, Yeon-Han
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.41.2-41.2
    • /
    • 2016
  • We perform three statistical studies on the physical properties and oscillations in the confined plasma such as a photospheric sunspot and confined coronal loop. From the statistical studies on the sunspot umbra and its oscillation, we find that (1) the total magnetic flux inside the umbra for the three groups increases proportionally with the powers of the umbral area and the power indices in the three groups significantly differ from each other; (2) the three groups have different characteristics in their umbral area, intensity, magnetic field strength, and Doppler velocity as well as their relationships; (3) the mean frequency of the umbral oscillations increases with the umbral mean magnetic field strength and height; (4) the time delay of the core intensity of Fe I absorption line relative to the continuum which are de-convolved with the frequency range higher than 3.5 mHz is mostly positive, implying that the photospheric umbral oscillations are likely upwardly propagating; (5) the umbral mean plasma beta ranges approximately 0.6-1.1 and does not vary significantly from pores to mature sunspots. From the comparative study on the quasi-periodic pulsations (QPPs) in the solar and stellar flares, (6) we find that the power index of the periods scaling the damping times observed in the stellar QPPs is consistent with that observed in the solar QPPs, suggesting that physical mechanisms responsible for the stellar QPPs are likely the magneto-hydrodynamic oscillation of solar coronal loops.

  • PDF

Physical Properties of Extruded Snack Made of Dried Onion and Onion Pomace (건조양파착즙박과 건조양파를 이용한 압출스낵의 물리적 특성)

  • 기해진;류기형;박양균
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.1
    • /
    • pp.64-69
    • /
    • 2001
  • In order to use onion pomace produced from concentration processing of onion juice, dried onion pamace and dried onion were mixed with corn grits at levels of 10, 20, and 30% and extruded in a twin-screw extruder. The physical properties of the extruded onion snack were investigated. The expansion ratio of the extruded onion pomace snack and onion snack and onion snack decreased with onion content. The water absorption index decreased with the onion content. The lightness and the redness of the onion snack decreased and increased as the incorporation level of onion increased, respectively. Native corn grits showed crystalline peaks at 15.2$^{\circ}$, 17.3$^{\circ}$, 17.9$^{\circ}$ and 23.3$^{\circ}$. However, the onion snack did not show the crystalline peaks as native corn grits and showed small peaks at 12.9$^{\circ}$ and 19.8$^{\circ}$. The onion snack showed lower gelatinization temperature and enthalpy than raw corn grits regardless of the onion contents. The rupture strength of the onion pomace snack and onion snack increased with the onion concentration.

  • PDF

Indigestible Carbohydrate Contents and Physical Properties of Goami2 harvested at the Maximized Milling Quality

  • Choi, In-Duck;Son, Jong-Rok;Hong, Ha-Cheol;Lee, Jeom-Ho;Kim, Kee-Jong
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.254-259
    • /
    • 2006
  • Milling qualities and indigestible carbohydrate fractions (ICF) depending on harvesting time of Goami2 (G2), mutant of Ilpum (IP) rice, was examined. Fifty days after heading (DAH) maximized head rice milling quality (57.69%) and ICF content ($5.09{\pm}0.36\;g/100\;g$). ICF contents and physical properties of G2 and IP at 50 DAH were compared. ICF of G2 was three times higher than that of IP ($1.61{\pm}0.09\;g/100\;g$). Parboiling treatment increased ICF of G2 to $7.18{\pm}0.16\;g/100\;g$. G2 showed lower water absorption index, which could lower pasting properties, but higher water solubility index, implying it contains more soluble components. Texture properties of G2 were different from those of IP, showing higher hardness, and lower adhesiveness and cohesiveness. Positive correlation was observed between ICF and hardness, but reverse correlation between ICF and cohesiveness.