• Title/Summary/Keyword: Physical Parameter

Search Result 869, Processing Time 0.026 seconds

The Effects of Stair Climbing Training with Functional Electrical Stimulation on Muscle Strength, Balance, and Gait in Patients with Chronic Stroke

  • Koh, Sieun;Choi, Wonjae;Lee, Seungwon
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.1
    • /
    • pp.32-39
    • /
    • 2021
  • Objective: The weakness of muscle strength due to stroke affects the posture control and gait in the patients with stroke. Stroke This study examined the effects of the stair climbing training with functional electrical stimulation on muscle strength, dynamic balance, and gait in individuals with chronic stroke. Design: Randomized controlled trial. Methods: Total forty-eight patients were randomly assigned to the 3 groups. Participants randomly divided to stair climbing training with functional electrical stimulation group (SCT+FES group, n=16), stair climbing training group (SCT group, n=16) and control group (n=16). Subjects in the SCT+FES group and SCT group performed stair walking training with and without functional electrical stimulation for 30 minutes, 3 sessions per week for 4 weeks and all subjects received conventional physical therapy for 30 minutes with 5 sessions per week for 4 weeks. Outcome measurements were assessed using the sit-to stand Test for strength, timed up and go test and modified-timed up and go test for dynamic balance, and 10m walk test and GaitRite system for gait. Results: In the SCT+FES group, subjects have been shown the significant increase in lower extremity strength (p<0.05), significantly improve in dynamic balance (p<0.05), and significantly improve in their temporal gait parameter (p<0.05). The SCT+FES group was significantly better than other groups in all parameters (p<0.05). Conclusions: This result suggested that the SCT+FES may be effective strategy to improve muscle strength, dynamic balance, and gait for individuals with chronic stroke.

Small signal model and parameter extraction of SOI MOSFET's (SOI MOSFET's의 소신호 등가 모델과 변수 추출)

  • Lee, Byung-Jin;Park, Sung-Wook;Ohm, Woo-Yong
    • 전자공학회논문지 IE
    • /
    • v.44 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • The increasing high frequency capabilities of CMOS have resulted in increased RF and analog design in CMOS. Design of RF and analog circuits depends critically on device S-parameter characteristics, magnitude of real and imaginary components and their behavior as a function of frequency. Utilization of scaled high performance CMOS technologies poses challenges as concerns for reliability degradation mechanisms increase. It is important to understand and quantify the effects of the reliability degradation mechanisms on the S-parameters and in turn on small signal model parameters. Various physical effects influencing small-signal parameters, especially the transconductance and capacitances and their degradation dependence, are discussed in detail. The measured S-parameters of H-gate and T-gate devices in a frequency range from 0.5GHz to 40GHz. All intrinsic and extrinsic parameters are extracted from S-parameters measurements at a single bias point in saturation. In this paper we discuss the analysis of the small signal equivalent circuits of RF SOI MOSFET's verificated for the purpose of exacting the change of parameter of small signal equivalent model followed by device flame.

Using the Loss parameter calculation method for the CPV system simulation (손실파라미터계산방법을 이용한 집광형태양광발전시스템 시뮬레이션)

  • Lee, Kang-Yeon;Jeong, Byeong-Ho;Kim, Ji-won
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.17-26
    • /
    • 2017
  • CPV system is composed with CPV cells, modules, PCS(power conditioning system), solar tracker, system installation and balance of systems(BOS). Mention about modelling method which is applied for CPV system simulation and evaluation system analysis. This paper focuses on CPV system modeling and optimal design of the electric energy production analysis through the development of proposed optimal CPV system simulation. Calculated simulation results of the generalized CPV system in regard to loss parameter calculation method can make out optimal configuration of CPV system with high reliability and stability. The loss parameter calculation method establish a mathematical modeling for the purposed of simulation and utilization various data for economical analysis of the CPV system design.

Analysis of Fuel Economy Sensitivity for Parallel Hybrid Bus according to Variation of Simulation Input Parameter (병렬형 하이브리드 버스의 시뮬레이션 입력 매개변수 변화에 따른 연비 민감도 분석)

  • Choi, Jongdae;Jeong, Jongryeol;Lee, Daeheung;Shin, Changwoo;Park, Yeong-Il;Lim, Wonsik;Cha, Suk Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.92-99
    • /
    • 2013
  • High oil price and global warming problem are being continued all over the world. For this reason, fuel economy and emission of greenhouse gas are regulated by law in many countries. Therefore many companies are researching and producing hybrid electric vehicles (HEVs) which substitute conventional internal combustion engine vehicle. However, these researches and productions are restricted to mainly passenger cars. Because of cost and physical problems, commercial vehicles are difficult to evaluate fuel economy. So simulations are important and it is necessary to know how sensitive parameters that enter into simulation affect. In this paper, forward simulations using AVL Cruise were conducted for analysis of fuel economy for parallel hybrid bus and were repeated by changing each parameter. Based on these results, root mean square errors (RMSE) are calculated for analysis of fuel economy sensitivity. The number of target parameters are 15. These parameters were classified with high and low sensitivity parameter relatively.

Indoor Environment Recognition of Mobile Robot Using SVR (SVR을 이용한 이동로봇의 실내환경 인식)

  • Shim, Jun-Hong;Choi, Jeong-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.8
    • /
    • pp.119-125
    • /
    • 2010
  • This paper proposes a new solution about physical problem of autonomous mobile robots system using ultrasonic sensors. An mobile robot uses several sensors for recognition of its circumstance. However, such sensor data are not accurate all the time. A means of removing the noise that sensor data contains constantly, It is possible for simulation to estimate its circumstance based on ultrasonic sensor data by learning algorithm SVR(Support Vector Regression). To use SVR, it is being selected parameter and kernel which are the component of SVR. Selecting the component of SVR, the most accurate parameter data was selected through the tests because it is not existed determined data. In addition, choosing the kernel uses RBF(Radial Basis Function) kernel which is the most generalized. This paper proposes SVR based algorithm to compensate for the above demerits of ultrasonic sensor through the experimentation under three different environments.

The Influence of Fitting Parameters on the Soil-Water Characteristics Curve in Stability Analysis of an Unsaturated Natural Slope (불포화 자연사면의 안정해석시 흙-함수특성곡선 맞춤계수의 영향)

  • Kim, Jae-Hong;Yoo, Yong-Jae;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.165-178
    • /
    • 2021
  • The influence of Soil-Water Characteristic Curve (SWCC) fitting parameters for an unsaturated natural slope was evaluated through seepage and slope stability analysis as a function of rainfall. Soil samples were collected from the study area in Jirisan National Park and the physical and mechanical characteristics of unsaturated soil layers were measured in laboratory tests. The saturation depth was calculated via seepage analysis by changing fitting parameters α, the parameter related to the Air Entry Value (AEV) and n, the parameter related to the slope of the SWCC in the range of natural conditions. Slope stability analysis using the limit equilibrium method considered the calculated depth of saturation. Results from seepage analysis for various rainfall conditions indicate the saturation depth in the soil layer suddenly increased as the fitting parameter α decreased; the saturation time for the entire soil layer also decreased. Slope stability analysis considering the calculated depth of saturation shows that the slope safety factor rapidly decreased as the fitting parameter α decreased, whereas the variation in slope safety factor was very small when n increased. Hence, fitting parameter α has a large effect on saturation depth during rainfall and therefore on slope stability, whereas slope stability is relatively unaffected by the fitting parameter n.

A 2D FE Model for Unique Solution of Peening Residual Stress in Single Shot Impact (단일 숏 충돌시 피닝잔류응력 유일해를 위한 2차원 유한요소해석 모델)

  • Kim, Tae-Hyung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.362-370
    • /
    • 2008
  • In this paper, we propose a 2D-FE model in single impact with combined physical factors to obtain a unique residual stress by shot peening. Applied physical parameters consist of elastic-plastic deformation of shot ball, material damping coefficients, strain rate, dynamic friction coefficients. As a kinematical parameter, there is impact velocity. Single impact FE model consists of 2D axisymmetric elements. The FE model with combined factors showed converged and unique distributions of surface stress, maximum compressive residual stress and deformation depth. Further, in contrast to the FE models with rigid shot and elastic deformable shot, FE model with plastic deformable shot produces residual stresses very close to experimental solutions by X-ray diffraction. We therefore validated the 2D FE model with combined peening factors and plastic deformable shot. This FE model will be a base of the 3D FE model for residual stresses by multi-impact shot peening.

An Overview of Bootstrapping Method Applicable to Survey Researches in Rehabilitation Science

  • Choi, Bong-sam
    • Physical Therapy Korea
    • /
    • v.23 no.2
    • /
    • pp.93-99
    • /
    • 2016
  • Background: Parametric statistical procedures are typically conducted under the condition in which a sample distribution is statistically identical with its population. In reality, investigators use inferential statistics to estimate parameters based on the sample drawn because population distributions are unknown. The uncertainty of limited data from the sample such as lack of sample size may be a challenge in most rehabilitation studies. Objects: The purpose of this study is to review the bootstrapping method to overcome shortcomings of limited sample size in rehabilitation studies. Methods: Articles were reviewed. Results: Bootstrapping method is a statistical procedure that permits the iterative re-sampling with replacement from a sample when the population distribution is unknown. This statistical procedure is to enhance the representativeness of the population being studied and to determine estimates of the parameters when sample size are too limited to generalize the study outcome to target population. The bootstrapping method would overcome limitations such as type II error resulting from small sample sizes. An application on a typical data of a study represented how to deal with challenges of estimating a parameter from small sample size and enhance the uncertainty with optimal confidence intervals and levels. Conclusion: Bootstrapping method may be an effective statistical procedure reducing the standard error of population parameters under the condition requiring both acceptable confidence intervals and confidence level (i.e., p=.05).

Effects of Observed Action Gait Training on Spatio-temporal Parameter and Motivation of Rehabilitation in Stroke Patients (뇌졸중환자의 동작관찰 보행훈련이 시·공간적 지표와 재활동기에 미치는 영향)

  • Kang, Kwon-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.3
    • /
    • pp.351-360
    • /
    • 2013
  • PURPOSE: The purpose of this study was to investigate the effects of observed action gait training on stroke patients. METHODS: 22 subjects were randomized into two groups. The observed action gait training performed that watched a video of normal gait before gait training and the general gait training without watching it. The experimental group(n=11) performed observed action gait training and the control group(n=11) performed general gait training. Both group received gait training for 3 times per week during 8 weeks. RESULTS: The experimental group showed significant differences in the cadence, gait velocity, stride, step, single limb support, double limb support, stride length and step length(p<.05). The control group showed significant differences only in the stride(p<.05). CONCLUSION: The observed action gait training affected coordination and weight shift, as well as symmetry of the body. Plasticity of the brain was facilitated by repetitive visual and sensory stimulation. The observed action gait training promoted the normal gait by watching the normal gait pattern. In conclusion, motor learning through the sensory stimulation promotes brain plasticity that could improve motor function, and observed action gait training indirectly identified stimulated brain activities.

Preparation and Characterization of KOH-Activated Carbons Developed from Petroleum Coke

  • Sayed Ahmed, S.A.;Abo El-Enin, Reham M.M.;El-Nabarawy, Th.
    • Carbon letters
    • /
    • v.10 no.4
    • /
    • pp.293-299
    • /
    • 2009
  • Potassium hydroxide activated carbons were prepared from Egyptian petroleum cokes with different KOH/coke ratios and at different activation temperatures and times. The textural properties were determined by adsorption of nitrogen at $-196^{\circ}C$. The adsorption of iodine and methylene blue was also investigated at $30^{\circ}C$. The surface area and the non-micropore volume increased whereas the micropore volume decreased with the increase of the ratio KOH/coke. Also the surface area and porosity increased with the rise of activation temperature from 500 to $800^{\circ}C$. Textural parameter considerably increased with the increase of activation time from 1 to 3 h. Further increasing of activation time from 3 to 4 h was associated with a less pronounced increase in textural parameters. The adsorption of iodine shows the same trend of surface area and porosity change exhibited by nitrogen adsorption, with KOH/coke ratio and temperature of activation. Adsorption of methylene blue follows pseudo-first-order kinetics and its equilibrium adsorption follows Langmuir and D-R models.