• Title/Summary/Keyword: Physical Optic

Search Result 78, Processing Time 0.029 seconds

Scattering Model for Hard Target Embedded inside Forest Using Physics-based Channel Model Based on Fractal Trees (프랙탈 나무 모델을 이용한 숲 속에 숨어 있는 타겟의 산란모델)

  • Koh Il-Suek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.174-181
    • /
    • 2005
  • In this paper, a hybrid model is developed, which can estimate scattering properties of a target embedded inside a forest. The model uses a physic-based channel model for a forest to accurately calculate the penetrated field through a forest canopy. The channel model is based on a fractal tree geometry and single scattering theory. To calculate scattering from the target physical optics(PO) is used to compute an induced current on the target surface since the dimension of the target is generally very large and the shape is very complicated. Then using reciprocity theorem, scattering generated by the PO current is calculated without an extra computational complexity.

Carbon Nanotube Effects on Physical Properties of Liquid Crystal and Electro-Optic Characteristics of Twisted Nematic Liquid Crystal Cell (카본나노튜브가 액정의 물성과 Twisted Nematic 액정 셀의 전기광학 특성에 미치는 영향)

  • Jeon, S.Y.;Jeong, S.J.;Jeong, S.H.;Shin, S.H.;An, K.H.;Lee, S.E.;Lee, S.H.;Lee, Y.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.41-42
    • /
    • 2006
  • Carbon nanotubes (CNTs) effects on physical properties of the liquid crystal and twisted nematic (TN) liquid crystal (LC) cells have been investigated. The minute doping of CNTs reduces rotational viscosity of the LC, and thus switching time of the TN cells is improved, especially in grey scale response time. In addition, the dielectric anisotropy and birefringence are not affected by such a small amount of CNT-doping and thus voltage-dependent transmittance remains the same.

  • PDF

Visual recovery demonstrated by functional MRI and diffusion tensor tractography in bilateral occipital lobe infarction

  • Seo, Jeong Pyo;Jang, Sung Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.31 no.2
    • /
    • pp.152-156
    • /
    • 2014
  • We report on a patient who showed visual recovery following bilateral occipital lobe infarct, as evaluated by follow up functional magnetic resonance imaging (fMRI) and diffusion tensor tractography (DTT). A 56-year-old female patient exhibited severe visual impairment since onset of the cerebral infarct in the bilateral occipital lobes. The patient complained that she could not see anything, although the central part of the visual field remained dimly at 1 week after onset. However, her visual function has shown improvement with time. As a result, at 5 weeks after onset, she notified that her visual field and visual acuity had improved. fMRI and DTT were acquired at 1 week and 4 weeks after onset, using a 1.5-T Philips Gyroscan Intera. The fiber number of left optic radiation (OR) increased from 257 (1-week) to 353 (4-week), although the fiber numbers for right OR were similar. No activation in the occipital lobe was observed on 1-week fMRI. By contrast, activation of the visual cortex, including the bilateral primary visual cortex, was observed on 4-week fMRI. We demonstrated visual recovery in this patient in terms of the changes observed on DTT and fMRI. It appears that the recovery of the left OR was attributed more to resolution of local factors, such as peri-infarct edema, than brain plasticity.

A study on optical properties of InP for implementation of fiber-optic temperature sensor (광섬유 온도센서를 위한 InP의 광학적 특성 연구)

  • Kim, Young-Soo;Shin, Keon-Hak;Chon, Byong-Sil
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.36-44
    • /
    • 1994
  • A fiber-optic temperature sensor utilizing InP as a sensing medium was implemented and tested to determine the dependance of the optical characteristics of InP on physical parameters for the use as design parameters in this type of sensors. The optical absorption coefficient of InP has been determined through the experimental measurement of the fundamental optical absorption characteristics at various temperature points. The transmission characteristics of light source at three temperature points($249^{\circ}K$, $298^{\circ}K$, $369^{\circ}K$) are computed from the optical absorption coefficient for a fixed length of InP. A series of measurement concluded that optical absorption edge moves to longer wavelength region at a speed of 0.42 nm / $^{\circ}K$ as the specimen gets hotter, and that increasing the thickness of the InP sensing layer shifts power density curve to lower temperature region.

  • PDF

Morphological Analyses on Retinal Glial Responses to Glaucomatous Injury Evoked by Venous Cauterization

  • Lee, Ji-Yeon;Shin, Ji-Man;Chun, Myung-Hoon;Oh, Su-Ja
    • Applied Microscopy
    • /
    • v.44 no.1
    • /
    • pp.21-29
    • /
    • 2014
  • Retinal glial responses to hypertensive glaucomatous injury were spatiotemporally surveyed. Retinas as a whole or vertical sections were processed for anti-glial fibrillary acidic protein (GFAP), anti-Iba1, anti-nerve growth factor (NGF), and anti-tumor necrosis factor (TNF)-${\alpha}$ immunohistochemistry for confocal microscopic analyses. The optic nerve head of paired controls was processed for electron microscopy. GFAP positive astrocytes appeared in the nerve fiber layer in the glaucomatous and control retinas, changing from fine protoplasmic to stout fibrous parallel to glaucomatous duration. Iba1 positive microglia appeared in both retinas, and enormous reaction appeared at the latest glaucomatous. M$\ddot{u}$ller reaction detected by GFAP reactivity expanded from the end feet to whole profile following to duration in the glaucomatous. NGF reactivity expended from the end feet to the proximal radial processes of the M$\ddot{u}$ller cells in both retinas according to glaucomatous duration. TNF-${\alpha}$ immunoreactivity in the nerve fiber layer was stronger in both the glaucomatous and controls than in the normal, and exceptionally at the latest glaucomatous was even lower than the normal. The astrocytes in the optic nerve head are interconnected with each other via gap junction. These results demonstrate that astrocyte reaction propagates to the contralateral via physical links, and TNF-${\alpha}$ is correlated with NGF production for neuroprotection in response to hypertensive glaucomatous injury.

Analysis of Property for White and RGB Multichip LED Luminaire (백색 LED와 RGB 멀티칩 LED 조명장치의 특성 분석)

  • Jeong, Byeong-Ho;Kim, Nam-Oh;Kim, Deog-Goo;Oh, Geum-Gon;Cho, Geum-Bae;Lee, Kang-Yoen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.23-30
    • /
    • 2009
  • LEDs are increasingly used for many applications including automotive, aviation, display, transportation and special lighting applications. Generally, the RGB multichip LED luminaire applied to signboard, emotional lighting system and display device and the white LED luminaire applied to general lighting system. white LED spectra for general lighting should be designed for high luminous efficacy as well as good color rendering. This paper describes characteristics of LED luminaire white LED and RGB multichip LED. Two type of LED luminaire prototype used experiment physical, electrical and optic test and performance analyzed. RGB multi-chip and phosphor-type white LED luminaire were analyzed by experiment on their color characteristics and luminous efficacy of radiation, distribution curve, and electrical characteristics. Research work is in progress to develop an improved performance for optic and electrical works well for two type of LED luminaires.

Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules (페룰 가공용 초정밀 무심 연삭기의 열 특성 해석)

  • Kim, Seo-Kil;Cho, Jae-Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.193-200
    • /
    • 2006
  • To perform the finish grinding process of ferrules which are widely used as fiber optic connectors, a high-precision centerless grinding machine is necessary. The high-precision centerless grinding machine is consisted of the hydrostatic GW and RW spindle systems, hydrostatic RW feeding mechanism, RW swivel mechanism, on-machine GW and RW dressers, and concrete-filled steel bed. In this study, the thermal characteristics of the high-precision centerless grinding machine such as the temperature distribution, temperature rise and thermal deformation, are estimated based on the virtual prototype of the grinding machine and the heat generation rates of heat sources related to the machine operation conditions. The reliability of the predicted results is demonstrated by the temperature characteristics measured from the physical prototype. Especially, the predicted and measured results show the fact that the high-precision centerless grinding machine has very stable thermal characteristics.

Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules

  • Kim, Seok-Il;Cho, Jae-Wan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.32-37
    • /
    • 2007
  • The outer diameter finishing grinding process required for ferrules, which are widely used as fiber optic connectors, is carried out by high-precision centerless grinding machines. In this study, the thermal characteristics of such a machine, for example, the temperature distribution, temperature rise, and thermal deformation, were estimated based on a virtual prototype and the heat generation rates of heat sources related to normal operating conditions. The prototype consisted of a concrete-filled bed. hydrostatic grinding wheel (GW) and regulating wheel (RW) spindle systems, a hydrostatic RW feed mechanism, a RW swivel mechanism, and on-machine GW and RW dressers. The reliability of the predicted results was demonstrated using temperature characteristics measured from a physical prototype. The predicted and measured results indicated that this particular high-precision centerless grinding machine had very stable thermal characteristics.

Transorbital Penetrating Intracranial Injury by a Chopstick

  • Shin, Tae-Hee;Kim, Jong-Hoon;Kwak, Kyung-Woo;Kim, Seong-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.4
    • /
    • pp.414-416
    • /
    • 2012
  • A 38-year-old man fell from a chair with a chopstick in his hand. The chopstick penetrated his left eye. He noticed pain, swelling, and numbness around his left eye. On physical examination, a linear wound was noted at the medial aspect of the left eyelid. Noncontrast computed tomography (CT) study showed a linear hypodense structure extending from the medial aspect of the left orbit to the occipital bone, suggesting a foreign body. This foreign body was hyperdense relative to normal parenchyma. From a CT scan with 3-dimensional reconstruction, the foreign body was found to be passing through the optic canal into the cranium. The clear plastic chopstick was withdrawn without difficulty. The patient was discharged home 3 weeks after his surgery. A treatment plan for a transorbital penetrating injury should be determined by a multidisciplinary team, with input from neurosurgeons and ophthalmologists.

Ultrasonic-detecting Characteristics by Partial Discharge using the Fiber Mach-Zehnder Interferometerin Insulating Oil (광섬유 Mach-Zehnder 간섭계를 이용한 부분방전 초음파 검출특성)

  • 심승환;이광식;이상훈;김달우
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.325-328
    • /
    • 2002
  • The partial-discharge(PD) is accompanied by physical and chemical phenomena, such as heat, light, noise, gas, chemical transformation, electric current, and electromagnetic radiation. The PD can be detected by measuring one of these changes. Although some techniques are employed in this purpose, several obstacles interfere with an on-line measurement. Now a fiber-optic sensor for detecting ultrasonics is suggested for the on line measurement system with high accuracy. In this paper, an optical fiber sensor utilizing the principal of Mach-Zehnder interferometer was proposed to detect the discharge signal.

  • PDF