• Title/Summary/Keyword: Physical Machine

Search Result 838, Processing Time 0.027 seconds

Machine Learning Approach to Blood Stasis Pattern Identification Based on Self-reported Symptoms (기계학습을 적용한 자기보고 증상 기반의 어혈 변증 모델 구축)

  • Kim, Hyunho;Yang, Seung-Bum;Kang, Yeonseok;Park, Young-Bae;Kim, Jae-Hyo
    • Korean Journal of Acupuncture
    • /
    • v.33 no.3
    • /
    • pp.102-113
    • /
    • 2016
  • Objectives : This study is aimed at developing and discussing the prediction model of blood stasis pattern of traditional Korean medicine(TKM) using machine learning algorithms: multiple logistic regression and decision tree model. Methods : First, we reviewed the blood stasis(BS) questionnaires of Korean, Chinese, and Japanese version to make a integrated BS questionnaire of patient-reported outcomes. Through a human subject research, patients-reported BS symptoms data were acquired. Next, experts decisions of 5 Korean medicine doctor were also acquired, and supervised learning models were developed using multiple logistic regression and decision tree. Results : Integrated BS questionnaire with 24 items was developed. Multiple logistic regression models with accuracy of 0.92(male) and 0.95(female) validated by 10-folds cross-validation were constructed. By decision tree modeling methods, male model with 8 decision node and female model with 6 decision node were made. In the both models, symptoms of 'recent physical trauma', 'chest pain', 'numbness', and 'menstrual disorder(female only)' were considered as important factors. Conclusions : Because machine learning, especially supervised learning, can reveal and suggest important or essential factors among the very various symptoms making up a pattern identification, it can be a very useful tool in researching diagnostics of TKM. With a proper patient-reported outcomes or well-structured database, it can also be applied to a pre-screening solutions of healthcare system in Mibyoung stage.

Optimum Washing Conditions of Artificially Soiled Cloths in a Drum-Type Washing Machine (드럼세탁기의 세척성 향상을 위한 인공 오염포의 세탁조건에 따른 세척성)

  • Chung, Hae-Won;Kim, Mi-Kyung;Kim, Hyun-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.11 s.158
    • /
    • pp.1589-1597
    • /
    • 2006
  • Nowadays, Korean consumers prefer drum-type washing machines to pulsator-type washers. Washing is a complex process involving the interaction of numerous physical and chemical influences. The main factors in the washing operations are the washing chemistry of the detergent along with the mechanical input, the wash temperature, and the time provided by the washing machine. Heavy-duty detergents that are used in drum-type washing machines contain different components from those used in vertical-axis washing machines. The bath ratio and the mechanical actions to which laundry is subjected are different between the drum-type and the vertical-axis washing machines. In this study we examined the effects of wash temperature, wash time, detergent concentration, and revolution speed on the removal of soils from artificially soiled cloths in a drum-type washing machine with heavy-duty commercial detergent. We used multiple regression analyses to find the relative importance of the factors and the optimum washing conditions. The results of these experiments showed that the washing temperature was the most important factor in the effective removal of most soils. This was followed by the washing time, the detergent concentration, and finally the revolution speed. In this study it was found that superfluous amounts of detergent did not sufficiently increase the soil removal rate. Koreans who are used to washing with cold water should increase the wash time to launder more efficiently.

Visual Inspection Method Which Improves Accuracy By using Histogram Transformation (히스토그램 변환을 사용하여 정확도를 향상시킨 외관 Vision 검사 방법)

  • Han, Kwang-Hee;Huh, Kyung-Moo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.4
    • /
    • pp.58-63
    • /
    • 2009
  • The appearance inspection of various electronic products and parts was executed by the eyesight of human. The appearance inspection is applied to the most electronic component of LCD Panel, flexible PCB and remote control. If the appearance of electronic products of small and minute size is inspected by the eyesight of human, we can't expect the stable inspection result because inspection result is changed by condition of physical and spirit of the checker. Therefore currently machine vision systems are used to many appearance inspection fields instead of inspection by human. The many problems of inspection by the checker are not occurred in machine vision circumstance. However, the inspection by automatic machine vision system is mainly influenced by illumination of workplace. In this paper, we propose a histogram transform method for improving accuracy of machine visual inspection.

Comparison of Partial Least Squares and Support Vector Machine for the Autoignition Temperature Prediction of Organic Compounds (유기물의 자연발화점 예측을 위한 부분최소자승법과 SVM의 비교)

  • Lee, Gi-Baek
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • The autoignition temperature is one of the most important physical properties used to determine the flammability characteristics of chemical substances. Despite the needs of the experimental autoignition temperature data for the design of chemical plants, it is not easy to get the data. This study have built and compared partial least squares (PLS) and support vector machine (SVM) models to predict the autoignition temperatures of 503 organic compounds out of DIPPR 801. As the independent variables of the models, 59 functional groups were chosen based on the group contribution method. The prediction errors calculated from cross-validation were employed to determine the optimal parameters of two models. And, particle swarm optimization was used to get three parameters of SVM model. The PLS and SVM results of the average absolute errors for the whole data range from 58.59K and 29.11K, respectively, indicating that the predictive ability of the SVM is much superior than PLS.

Circular Path Generation Technique for Ball Bar Measurement by Simultaneous Movement of Two Axes (2 축 동시구동을 통한 볼바 측정용 원호경로 생성 방법)

  • Lee, Dong-Mok;Lee, Hoon-Hee;Yang, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.783-790
    • /
    • 2013
  • Circular path generation for ball bar measurement using the simultaneous movement of two axes with at least one rotary axis requires the execution of CAM software. However, a change in the machine type or measurement condition requires a new execution of the CAM software, which is cumbersome. This paper presents a circular path generation technique that does not require CAM software and is applicable to different types of driving axes with an arbitrary structural configuration of machine tools and any ball bar setup condition. Mathematical equations are derived for three cases using the proposed technique. In addition, to inspect the measurement feasibility for avoiding physical interference among the ball bar parts, a tilting angle calculation is proposed. The validity of the proposed technique was verified by performing a ball bar experiment with A and C as the simultaneous axes of a five-axis machine tool.

Digital Mirror System with Machine Learning and Microservices (머신 러닝과 Microservice 기반 디지털 미러 시스템)

  • Song, Myeong Ho;Kim, Soo Dong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.9
    • /
    • pp.267-280
    • /
    • 2020
  • Mirror is a physical reflective surface, typically of glass coated with a metal amalgam, and it is to reflect an image clearly. They are available everywhere anytime and become an essential tool for us to observe our faces and appearances. With the advent of modern software technology, we are motivated to enhance the reflection capability of mirrors with the convenience and intelligence of realtime processing, microservices, and machine learning. In this paper, we present a development of Digital Mirror System that provides the realtime reflection functionality as mirror while providing additional convenience and intelligence including personal information retrieval, public information retrieval, appearance age detection, and emotion detection. Moreover, it provides a multi-model user interface of touch-based, voice-based, and gesture-based. We present our design and discuss how it can be implemented with current technology to deliver the realtime mirror reflection while providing useful information and machine learning intelligence.

Prediction of pollution loads in the Geum River upstream using the recurrent neural network algorithm

  • Lim, Heesung;An, Hyunuk;Kim, Haedo;Lee, Jeaju
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.67-78
    • /
    • 2019
  • The purpose of this study was to predict the water quality using the RNN (recurrent neutral network) and LSTM (long short-term memory). These are advanced forms of machine learning algorithms that are better suited for time series learning compared to artificial neural networks; however, they have not been investigated before for water quality prediction. Three water quality indexes, the BOD (biochemical oxygen demand), COD (chemical oxygen demand), and SS (suspended solids) are predicted by the RNN and LSTM. TensorFlow, an open source library developed by Google, was used to implement the machine learning algorithm. The Okcheon observation point in the Geum River basin in the Republic of Korea was selected as the target point for the prediction of the water quality. Ten years of daily observed meteorological (daily temperature and daily wind speed) and hydrological (water level and flow discharge) data were used as the inputs, and irregularly observed water quality (BOD, COD, and SS) data were used as the learning materials. The irregularly observed water quality data were converted into daily data with the linear interpolation method. The water quality after one day was predicted by the machine learning algorithm, and it was found that a water quality prediction is possible with high accuracy compared to existing physical modeling results in the prediction of the BOD, COD, and SS, which are very non-linear. The sequence length and iteration were changed to compare the performances of the algorithms.

A novel method for generation and prediction of crack propagation in gravity dams

  • Zhang, Kefan;Lu, Fangyun;Peng, Yong;Li, Xiangyu
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.665-675
    • /
    • 2022
  • The safety problems of giant hydraulic structures such as dams caused by terrorist attacks, earthquakes, and wars often have an important impact on a country's economy and people's livelihood. For the national defense department, timely and effective assessment of damage to or impending damage to dams and other structures is an important issue related to the safety of people's lives and property. In the field of damage assessment and vulnerability analysis, it is usually necessary to give the damage assessment results within a few minutes to determine the physical damage (crack length, crater size, etc.) and functional damage (decreased power generation capacity, dam stability descent, etc.), so that other defense and security departments can take corresponding measures to control potential other hazards. Although traditional numerical calculation methods can accurately calculate the crack length and crater size under certain combat conditions, it usually takes a long time and is not suitable for rapid damage assessment. In order to solve similar problems, this article combines simulation calculation methods with machine learning technology interdisciplinary. First, the common concrete gravity dam shape was selected as the simulation calculation object, and XFEM (Extended Finite Element Method) was used to simulate and calculate 19 cracks with different initial positions. Then, an LSTM (Long-Short Term Memory) machine learning model was established. 15 crack paths were selected as the training set and others were set for test. At last, the LSTM model was trained by the training set, and the prediction results on the crack path were compared with the test set. The results show that this method can be used to predict the crack propagation path rapidly and accurately. In general, this article explores the application of machine learning related technologies in the field of mechanics. It has broad application prospects in the fields of damage assessment and vulnerability analysis.

Moment-rotational analysis of soil during mining induced ground movements by hybrid machine learning assisted quantification models of ELM-SVM

  • Dai, Bibo;Xu, Zhijun;Zeng, Jie;Zandi, Yousef;Rahimi, Abouzar;Pourkhorshidi, Sara;Khadimallah, Mohamed Amine;Zhao, Xingdong;El-Arab, Islam Ezz
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.831-850
    • /
    • 2021
  • Surface subsidence caused by mining subsidence has an impact on neighboring structures and utilities. In other words, subsurface voids created by mining or tunneling activities induce soil movement, exposing buildings to physical and/or functional destruction. Soil-structure is evaluated employing probability distribution laws to account for their uncertainty and complexity to estimate structural vulnerability. In this study, to investigate the displacement field and surface settlement profile caused by mining subsidence, on the basis of a Winklersoil model, analytical equations for the moment-rotation response ofsoil during mining induced ground movements are developed. To define the full static moment-rotation response, an equation for the uplift-yield state is constructed and integrated with equations for the uplift- and yield-only conditions. The constructed model's findings reveal that the inverse of the factor of safety (x) has a considerable influence on the moment-rotation curve. The maximal moment-rotation response of the footing is defined by X = 0:6. Despite the use of Winkler model, the computed moment-rotation response results derived from the literature were analyzed through the ELM-SVM hybrid of Extreme Learning Machine (ELM) and Support Vector Machine (SVM). Also, Monte Carlo simulations are used to apply continuous random parameters to assess the transmission of ground motions to structures. Following the findings of RMSE and R2, the results show that the choice of probabilistic laws of input parameters has a substantial impact on the outcome of analysis performed.

Design and Implementation of a Cloud-based Linux Software Practice Platform (클라우드 기반 리눅스 SW 실습 플랫폼의 설계 및 구현 )

  • Hyokyung Bahn;Kyungwoon Cho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.67-71
    • /
    • 2023
  • Recently, there are increasing cases of managing software labs by assigning virtual PCs in the cloud instead of physical PCs to each student. In this paper, we design and implement a Linux-based software practice platform that allows students to efficiently build their environments in the cloud. In our platform, instructors can create and control virtual machine templates for all students at once, and students practice on their own machines as administrators. Instructors can also troubleshoot each machine and restore its state. Meanwhile, the biggest obstacle to implementing this approach is the difficulty of predicting the costs of cloud services instantly. To cope with this situation, we propose a model that can estimate the cost of cloud resources used. By using daemons in each user's virtual machine, we instantly estimate resource usage and costs. Although our model has very low overhead, the predicted results are very close to the actual resource usage measured by cloud service providers. To further validate our model, we used the proposed platform in a Linux practice lecture for a semester and confirmed that the proposed model is very accurate.