Journal of The Korean Society of Integrative Medicine
/
v.12
no.3
/
pp.11-24
/
2024
Purpose : This study aims to identify the factors influencing health-related quality of life through machine learning of the general characteristics of patients with hypertension and to provide a basis for related research on patients, such as intervention strategies and management guidelines in the field of physical therapy for health promotion. Methods : Annual data from the second Korean Health Panel (Version 2.0) from 2019 to 2020, conducted jointly by the Korea Health and Social Research Institute and the National Health Insurance Service, were analyzed (Korea Health Panel, 2024). The data used in this study was collected from January to July 2020, and the data was collected using computer-assisted face-to-face interviews. Of the 13,530 household members surveyed, 1,368 were selected as the final study participants after removing missing values from 3,448 individuals diagnosed with hypertension by a doctor. Results : The results showed that walking (P2) was the most significant factor affecting health-related quality of life in random forest, followed by perceived stress (HS1), body mass index (BMIc), total household income (TOTc), subjective health status (SRHc), marital status (Marr), and education level (Edu). Conclusion :To prevent and manage chronic diseases such as hypertension, as well as to provide customized interventions for patients in advanced stages of the disease, research should be conducted in the field of physical therapy to identify influencing factors using machine learning. Based on the findings of this study, we believe that there is a need for additional content that can be utilized in the field of physical therapy to improve the health-related quality of life of patients with hypertension, such as diagnostic assessment and intervention management guidelines for hypertension, and education on perceived stress and subjective health status.
Journal of the Korea Society of Computer and Information
/
v.29
no.10
/
pp.113-120
/
2024
This study aims to assess the effectiveness of machine learning models in predicting the pass rates of physical therapy students in national exams. Traditional grade prediction methods primarily rely on past academic performance or demographic data. However, this study employed machine learning and deep learning techniques to analyze mock test scores with the goal of improving prediction accuracy. Data from 1,242 students across five Korean universities were collected and preprocessed, followed by analysis using various models. Models, including those generated and fine-tuned with the assistance of ChatGPT-4, were applied to the dataset. The results showed that H2OAutoML (GBM2) performed the best with an accuracy of 98.4%, while TabNet, LightGBM, and RandomForest also demonstrated high performance. This study demonstrates the exceptional effectiveness of H2OAutoML (GBM2) in predicting national exam pass rates and suggests that these AI-assisted models can significantly contribute to medical education and policy.
Purpose: The study aims were to develop a wearable inertial sensor-based gait analysis device that uses machine learning algorithms, and to validate this novel device using temporal gait parameters. Methods: Thirty-four healthy young participants (22 male, 12 female, aged 25.76 years) with no musculoskeletal disorders were asked to walk at three different speeds. As they walked, data were simultaneously collected by a motion capture system and inertial measurement units (Reseed®). The data were sent to a machine learning algorithm adapted to the wearable inertial sensor-based gait analysis device. The validity of the newly developed instrument was assessed by comparing it to data from the motion capture system. Results: At normal speeds, intra-class correlation coefficients (ICC) for the temporal gait parameters were excellent (ICC [2, 1], 0.99~0.99), and coefficient of variation (CV) error values were insignificant for all gait parameters (0.31~1.08%). At slow speeds, ICCs for the temporal gait parameters were excellent (ICC [2, 1], 0.98~0.99), and CV error values were very small for all gait parameters (0.33~1.24%). At the fastest speeds, ICCs for temporal gait parameters were excellent (ICC [2, 1], 0.86~0.99) but less impressive than for the other speeds. CV error values were small for all gait parameters (0.17~5.58%). Conclusion: These results confirm that both the wearable inertial sensor-based gait analysis device and the machine learning algorithms have strong concurrent validity for temporal variables. On that basis, this novel wearable device is likely to prove useful for establishing temporal gait parameters while assessing gait.
Both hand-made and machine-made Chinese noodles are popular in Korea. In this study, each type was evaluated in terms of its physical properties to rigorously determine for consumers which one has better qualities. The noodles were instrumentally measured for color, size, moisture content, density, viscoelasticity, and cutting force. The behaviors of the noodles were visually observed during cooking, and sensory evaluations were performed with the cooked noodles. The hand-made raw noodles were less dense, had higher moisture content, and generated more bubbles during cooking than the machine-made noodles. This indicated that the hand-made noodles contained more entrapped air, thereby resulting in the above physical characteristics. The change in noodle size after cooking was greater in the hand-made noodles, indicating that more entrapped air in expansion escaped during cooking and was replaced by water. The cutting force and viscoelasticity of the hand-made noodles were lower, and were controlled by viscous properties, respectively. These results agreed with the fact that the hand-made noodles had higher moisture content and lower density. In the sensory evaluation, the hand-made noodles presented lower hardness, but higher elasticity. It was inferred that the hand-made noodle dough underwent repeated processes of folding and extending, resulting in better developed of the gluten structure. Consequently, the hand-made noodles were determined to be different than the machine-made noodles in terms of instrumental measurements and sensory observations, suggesting that the hand-made noodles had superior textural properties.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.5
/
pp.1998-2014
/
2016
In recent years, cloud computing services based on smart phones and other mobile terminals have been a rapid development. Cloud computing has the advantages of mass storage capacity and high-speed computing power, and it can meet the needs of different types of users, and under the background, mobile cloud computing (MCC) is now booming. In this paper, we have put forward a new classification-based virtual machine placement (CBVMP) algorithm for MCC, and it aims at improving the efficiency of virtual machine (VM) allocation and the disequilibrium utilization of underlying physical resources in large cloud data center. By simulation experiments based on CloudSim cloud platform, the experimental results show that the new algorithm can improve the efficiency of the VM placement and the utilization rate of underlying physical resources.
Journal of the Korean Society of Physical Medicine
/
v.9
no.3
/
pp.293-299
/
2014
PURPOSE: The purpose of this study was to investigate the effect of functional training using a sliding rehabilitation machine (SRM) on the mobility of the ankle joint and balance in children with cerebral palsy (CP). METHODS: The subjects consisted of 11 children who were diagnosed with spastic CP. They carried out the functional training using the SRM for 30 minutes, three times a week, for 8 weeks. Before and after all of the training sessions, the subjects were tested using the Pediatric Balance Scale (PBS) and Gross Motor Function Measurement (GMFM), range of motion (ROM) in the ankle joint, the pennation angle of the gastrocnemius muscle and the fascicle length of gastrocnemius muscle were measured to determine the mobility of the ankle joint and balance ability. RESULTS: There were significant differences between the pre-test and post-test in the PBS and GMFM. The ROM of the ankle joint was significantly increased after the functional training using the SRM. Moreover, the fascicle length was increased and the pennation angle was decreased after the functional training using the SRM, but the difference was not significant. CONCLUSION: These results suggest that functional training using the SRM may have some effect on the mobility of ankle joint and balance in children with CP. According to the results, this study could present an approach to the rehabilitation or treatment of children with CP.
Journal of the Korea Institute of Information Security & Cryptology
/
v.31
no.6
/
pp.1279-1290
/
2021
As vehicle technology has grown, autonomous driving that does not require driver intervention has developed. Accordingly, CAN security, an network of in-vehicles, has also become important. CAN shows vulnerabilities in hacking attacks, and machine learning-based IDS is introduced to detect these attacks. However, despite its high accuracy, machine learning showed vulnerability against adversarial examples. In this paper, we propose a adversarial CAN frame generation method to avoid IDS by adding noise to feature and proceeding with feature selection and re-packet for physical attack of the vehicle. We check how well the adversarial CAN frame avoids IDS through experiments for each case that adversarial CAN frame generated by all feature modulation, modulation after feature selection, preprocessing after re-packet.
Akbar, Waleed;Rivera, Javier J.D.;Ahmed, Khan T.;Muhammad, Afaq;Song, Wang-Cheol
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.8
/
pp.2801-2815
/
2022
With the advent and realization of Software Defined Network (SDN) architecture, many organizations are now shifting towards this paradigm. SDN brings more control, higher scalability, and serene elasticity. The SDN spontaneously changes the network configuration according to the dynamic network requirements inside the constrained environments. Therefore, a monitoring system that can monitor the physical and virtual entities is needed to operate this type of network technology with high efficiency and proficiency. In this manuscript, we propose a real-time monitoring system for data collection and visualization that includes the Prometheus, node exporter, and Grafana. A node exporter is configured on the physical devices to collect the physical and virtual entities resources utilization logs. A real-time Prometheus database is configured to collect and store the data from all the exporters. Furthermore, the Grafana is affixed with Prometheus to visualize the current network status and device provisioning. A monitoring system is deployed on the physical infrastructure of the KOREN topology. Data collected by the monitoring system is further pre-processed and restructured into a dataset. A monitoring system is further enhanced by including machine learning techniques applied on the formatted datasets to identify the elephant flows. Additionally, a Random Forest is trained on our generated labeled datasets, and the classification models' performance are verified using accuracy metrics.
Arvind, Varun;Kim, Jun S.;Oermann, Eric K.;Kaji, Deepak;Cho, Samuel K.
Neurospine
/
v.15
no.4
/
pp.329-337
/
2018
Objective: Machine learning algorithms excel at leveraging big data to identify complex patterns that can be used to aid in clinical decision-making. The objective of this study is to demonstrate the performance of machine learning models in predicting postoperative complications following anterior cervical discectomy and fusion (ACDF). Methods: Artificial neural network (ANN), logistic regression (LR), support vector machine (SVM), and random forest decision tree (RF) models were trained on a multicenter data set of patients undergoing ACDF to predict surgical complications based on readily available patient data. Following training, these models were compared to the predictive capability of American Society of Anesthesiologists (ASA) physical status classification. Results: A total of 20,879 patients were identified as having undergone ACDF. Following exclusion criteria, patients were divided into 14,615 patients for training and 6,264 for testing data sets. ANN and LR consistently outperformed ASA physical status classification in predicting every complication (p < 0.05). The ANN outperformed LR in predicting venous thromboembolism, wound complication, and mortality (p < 0.05). The SVM and RF models were no better than random chance at predicting any of the postoperative complications (p < 0.05). Conclusion: ANN and LR algorithms outperform ASA physical status classification for predicting individual postoperative complications. Additionally, neural networks have greater sensitivity than LR when predicting mortality and wound complications. With the growing size of medical data, the training of machine learning on these large datasets promises to improve risk prognostication, with the ability of continuously learning making them excellent tools in complex clinical scenarios.
Proceedings of the Korean Society of Computer Information Conference
/
2020.07a
/
pp.387-388
/
2020
As the utilization of microservice architectural style in diverse applications are increasing, the microservice deployment cost became a concern for many companies. We propose an approach to reduce the deployment cost by generating an algorithm which minimizes the cost of basic operation of a physical machine and the cost of resources assigned to a physical machine. This algorithm will produce optimal resource allocation and deployment location based on genetic algorithm process.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.