• Title/Summary/Keyword: Physical Computing Game

Search Result 13, Processing Time 0.021 seconds

A Study on the Environmental Elements for Physical Computing Game Development (피지컬 컴퓨팅 게임 개발을 위한 환경적 요소에 관한 연구)

  • Lee, Jun Suk;Rhee, Dae Woong
    • Journal of Korea Game Society
    • /
    • v.21 no.1
    • /
    • pp.81-90
    • /
    • 2021
  • In this study, we derive the important environmental elements for developing physical computing game. Environmental elements are selected based on the analysis of the physical computing environment in the area including physical computing itself, existing physical computing games, digital art, and information education. The derived elements are verified by Delphi's investigation methodology. The 27 factors are chosen in terms of development environment, development case, and development service. Among them the environmental aspects of physical computing are ranked as the highest importance.

Selection and research of physical computing game elements through case analysis (사례 분석을 통한 피지컬 컴퓨팅 게임 요소 선별 및 연구)

  • Lee, Jun-Suk;Rhee, Dae-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.659-666
    • /
    • 2021
  • This research will apply the environmental characteristics of physical computing to game development, which has the concept of giving substantial materiality to digital media that do not exist in reality. The processing process of physical computing is digital input and digital output, and analog input and analog output, which mainly uses Malik controllers. Therefore, we select development elements by analyzing research cases in the field of digital art and information education where physical computing is studied a lot, and by analyzing games that borrowed some physical computing elements. The derived elements are verified by the Delphi's research methodology through agreement with experts. 12 elements are selected in this study, and the importance is shown in order of the physical properties in the virtual world, the suitability of the implementation technology, and the conformity between real and virtual players.

Game Development Training Program Design Using Physical computing For Elementary School Students (초등학생을 위한 피지컬 컴퓨팅 활용 게임 개발 교육 프로그램 설계)

  • Han, Jeong-Min;Yi, So-Yul;Lee, Young-Jun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.01a
    • /
    • pp.109-112
    • /
    • 2018
  • 본 연구는 피지컬 컴퓨팅 교육과 게임 개발 프로그래밍 교육의 효과성을 결합하여 피지컬 컴퓨팅 게임 개발 교육 프로그램을 개발하였다. 초등학생을 위한 피지컬 컴퓨팅 도구로 보드형 교구인 코드이노를 선정하였다. 보드형 피지컬 컴퓨팅 도구에 대한 검토와 게임 개발 소프트웨어 교육에 대한 연구를 바탕으로, EPL을 학습한 학생들을 대상으로 실시하게 될 초등학생을 위한 코드이노 기반 게임 개발 소프트웨어 교육 프로그램을 제안한다.

  • PDF

Goal-oriented Movement Reality-based Skeleton Animation Using Machine Learning

  • Yu-Won JEONG
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.267-277
    • /
    • 2024
  • This paper explores the use of machine learning in game production to create goal-oriented, realistic animations for skeleton monsters. The purpose of this research is to enhance realism by implementing intelligent movements in monsters within game development. To achieve this, we designed and implemented a learning model for skeleton monsters using reinforcement learning algorithms. During the machine learning process, various reward conditions were established, including the monster's speed, direction, leg movements, and goal contact. The use of configurable joints introduced physical constraints. The experimental method validated performance through seven statistical graphs generated using machine learning methods. The results demonstrated that the developed model allows skeleton monsters to move to their target points efficiently and with natural animation. This paper has implemented a method for creating game monster animations using machine learning, which can be applied in various gaming environments in the future. The year 2024 is expected to bring expanded innovation in the gaming industry. Currently, advancements in technology such as virtual reality, AI, and cloud computing are redefining the sector, providing new experiences and various opportunities. Innovative content optimized for this period is needed to offer new gaming experiences. A high level of interaction and realism, along with the immersion and fun it induces, must be established as the foundation for the environment in which these can be implemented. Recent advancements in AI technology are significantly impacting the gaming industry. By applying many elements necessary for game development, AI can efficiently optimize the game production environment. Through this research, We demonstrate that the application of machine learning to Unity and game engines in game development can contribute to creating more dynamic and realistic game environments. To ensure that VR gaming does not end as a mere craze, we propose new methods in this study to enhance realism and immersion, thereby increasing enjoyment for continuous user engagement.

Flying Cake: An Augmented Game on Mobile Device (Flying Cake: 모바일 단말기를 이용한 실감형 게임)

  • Park, An-Jin;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.79-94
    • /
    • 2007
  • In the ubiquitous computing age which uses a high quantity network, mobile devices such as wearable and hand-held ones with a small tamers and a wireless communication module will be widely used in near future. Thus, a lot of researches about an augmented game on mobile devices have been attempted recently. The existing augmented games used a traditional 'backpack' system and a pattern marker. The 'backpack' system is expensive, cumbersome and inconvenient to use, and because of the pattern marker, it is only possible to play the game in the previously installed palace. In this paper, we propose an augmented game called Flying Cake using a face region to create the virtual object(character) without the pattern marker, which manually indicates an overlapped location of the virtual object in the real world, on a small and mobile PDA instead of the cumbersome hardware. Flying Cake is an augmented shooting game. This game supplies us with two types: 1) a single player which attacks a virtual character on images captured by a camera in an outdoor physical area, 2) dual players which attack the virtual character on images which we received through a wireless LAN. We overlap the virtual character on the face region using a face detection technique, and users play Flying Cake though attacking the virtual character. Flying Cake supplies new pleasure to flayers with a new game paradigm through an interaction between the user in the physical world captured by the PDA camera and the virtual character in a virtual world using the face detection.

Gesture Control Gaming for Motoric Post-Stroke Rehabilitation

  • Andi Bese Firdausiah Mansur
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.37-43
    • /
    • 2023
  • The hospital situation, timing, and patient restrictions have become obstacles to an optimum therapy session. The crowdedness of the hospital might lead to a tight schedule and a shorter period of therapy. This condition might strike a post-stroke patient in a dilemma where they need regular treatment to recover their nervous system. In this work, we propose an in-house and uncomplex serious game system that can be used for physical therapy. The Kinect camera is used to capture the depth image stream of a human skeleton. Afterwards, the user might use their hand gesture to control the game. Voice recognition is deployed to ease them with play. Users must complete the given challenge to obtain a more significant outcome from this therapy system. Subjects will use their upper limb and hands to capture the 3D objects with different speeds and positions. The more substantial challenge, speed, and location will be increased and random. Each delegated entity will raise the scores. Afterwards, the scores will be further evaluated to correlate with therapy progress. Users are delighted with the system and eager to use it as their daily exercise. The experimental studies show a comparison between score and difficulty that represent characteristics of user and game. Users tend to quickly adapt to easy and medium levels, while high level requires better focus and proper synchronization between hand and eye to capture the 3D objects. The statistical analysis with a confidence rate(α:0.05) of the usability test shows that the proposed gaming is accessible, even without specialized training. It is not only for therapy but also for fitness because it can be used for body exercise. The result of the experiment is very satisfying. Most users enjoy and familiarize themselves quickly. The evaluation study demonstrates user satisfaction and perception during testing. Future work of the proposed serious game might involve haptic devices to stimulate their physical sensation.

Cubic Tangible User Interface Development for Mobile Environment (모바일 환경을 위한 큐빅형 텐저블 사용자 인터페이스 개발)

  • Ok, Soo-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.10
    • /
    • pp.32-39
    • /
    • 2009
  • Most mobile devices provide limited input interfaces in order to maximize the mobility and the portability. In this paper, the author proposes a small cubic-shaped tangible input interface which tracks the location, the direction, and the velocity using MEMS sensor technology to overcome the physical limitations of the poor input devices in mobile computing environments. As the preliminary phase for implementing the proposed tangible input interface, the prototype design and implementation methods are described in this paper. Various experiments such as menu manipulation, 3-dimensional contents control, and sensor data visualization have been performed in order to verify the validity of the proposed interface. The proposed tangible device enables direct and intuitive manipulation. It is obvious that the mobile computing will be more widespread and various kinds of new contents will emerge in near future. The proposed interface can be successfully employed for the new contents services that cannot be easily implemented because of the limitation of current input devices. It is also obvious that this kind of interface will be a critical component for future mobile communication environments. The proposed tangible interface will be further improved to be applied to various contents manipulation including 2D/3D games.

Analysis of the Awareness and Needs of Early Childhood Teachers for Developing of Young Children's Creativity Program Using Physical Computing (피지컬 컴퓨팅을 활용한 유아 창의성 프로그램 개발을 위한 유아교사의 인식 및 요구 분석)

  • Park, Sun-Mi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.89-97
    • /
    • 2021
  • The purpose of this study was to examine the awareness of early childhood teachers for early childhood creativity programs using physical computing in an effort to provide future direction for program development. The findings were as follows: First, 43.8 percent of teachers answered they were neutral about the need for these programs, while 40.5 percent replied these programs were necessary. Second, 73.8 percent thought the utilization of physical computing tools would be useful. Third, the largest group thought that the programs should be provided for five-year-olds. Regarding the frequency of programs, once or twice a week were considered most appropriate. Concerning the length of each activity, 20 to 30 minutes was identified as ideal, and study subjects preferred small group activities. In regard to the most effective theme for these programs, tools for daily life were considered best. As for educational content to be included in program planning, scientific inquiry and experiment were viewed as best, followed by the design/ production/utilization of creative works, game and play, and producing and playing musical instruments. Evaluation by a creativity test was chosen as the most desirable evaluation method.

A Study on the Industrial Applications of Quantum Information Processing and Communication (퀀텀정보통신기술의 산업적 응용가능성에 관한 연구)

  • Kwon, Moon-Ju;Kim, Richard C.S.;Park, Seong-Taek;Kim, Tae Ung
    • Journal of Digital Convergence
    • /
    • v.11 no.7
    • /
    • pp.173-184
    • /
    • 2013
  • Quantum Information Processing and Communication, based on the physical laws of Quantum mechanics, exploits fundamentally new modes of computation and communication and holds the promise of immense computing power beyond the capabilities of any classical computer. In Quantum Information Processing, replacing bits with qubits, one makes two-state quantum systems that do not possess in general the definite values of 0 or 1 of classical bits, but rather are in a so-called. "coherent superposition", of the two. Full exploitation of this additional freedom implies that new processing devices need to be designed and implemented, and that a large scale quantum computer can in principle be built. New discoveries will enable a range of exciting new possibilities including: greatly improved sensors with potential impact for mineral exploration and improved medical imaging and a revolutionary new computational paradigm that will likely lead to the creation of computing devices capable of efficiently solving problems that cannot be solved on a classical computer. In short, Quantum computing is an economy game changer, with a potential of disrupting entire industries and creating new ones.

Efficient Method to Support Mobile Virtualization-based Cloud Resource Management (모바일 가상화기반 클라우드 자원관리를 지원하는 효율적 방법)

  • Kang, Yongho;Jang, Changbok;Lee, Wanjik;Heo, Seokyeol;Kim, Jooman
    • Journal of Digital Convergence
    • /
    • v.12 no.2
    • /
    • pp.277-283
    • /
    • 2014
  • Recently, various cloud service has been being provided on mobile devices as well as desktop pc and server computer. Also, Smartphone users are very rapidly increasing, and they are using it for enjoying various services(cloud service, game, banking service, mobile office, etc.). So, research to utilize resources on mobile device has been conducted. In this paper, We have suggested efficient method of cloud resource management by using information of available physical resources(CPU, memory, storage, etc.) between mobile devices, and information of physical resource in mobile device. Suggested technology is possible to guarantee real-time process and efficiently manage resources.