• Title/Summary/Keyword: Physical Boundary

Search Result 600, Processing Time 0.027 seconds

A Study on Dynamic Characteristics of Hydraulic Transmission Line by Finite Difference Method (有限差分法을 利용한 油壓管路의 特性에 관한 硏究)

  • 오철환;정선국;송창섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.15-24
    • /
    • 1986
  • Pressure trasients must deal with safety problem of system. For identification of physical situation that can and method of limiting surges are essential consideration in sucessful design. The finite difference equation by method of characteristics are derived from the governing equation of unsteady flow in a pipe, and solved by using boundary condition derived. A computer program which can simulate general hydraulic system is developed by using finite difference equations and boundary conditions derived. The sumulated resulted by developed computer program are in fair agreement with experiment result.

Radiative Heat Transfer in Discretely Heated Irregular Geometry with an Absorbing, Emitting, and An-isotropically Scattering Medium Using Combined Monte-Carlo and Finite Volume Method (몬테카를로/유한체적결합법에 의한 국소 가열되는 복잡한 형상에서의 흡수, 방사, 비등방산란 매질에 대한 복사열전달 해석)

  • Byun, Do-Young;Lee, Chang-Jin;Chang, Seon-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.580-586
    • /
    • 2004
  • The ray effects of finite volume method (FVM) or discrete ordinate method (DOM) are known to show a non-physical oscillation in solution of radiative heat transfer on a boundary. This wiggling behavior is caused by the finite discretization of the continuous control angle. This article proposes a combined procedure of the Monte-Carlo and finite-volume method (CMCFVM) for solving radiative heat transfer in absorbing, emitting, and an-isotropically scattering medium with an isolated boundary heat source. To tackle the problem, which is especially pronounced in a medium with an isolated heat source, the CMCFVM is suggested here and successfully applied to a two-dimensional circular geometry.

CHANGE OF CHANNEL-FLOW TOPOLOGY BY A STREAMWISE-PERIODIC ARRAY OF ROTATING CIRCULAR CYLINDERS (주기적으로 배열된 회전하는 원형 실린더를 이용한 채널유동 토폴로지 변화)

  • Jeong, Taekyeong;Yang, Kyung-Soo;Lee, Kyongjun;Kang, Changwoo
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.17-24
    • /
    • 2013
  • In this study, we consider the characteristics of channel flow in the presence of an infinite streamwise array of equispaced identical rotating circular cylinders. This flow configuration can be regarded as a model representing a micro channel or an internal heat exchanger with cylindrical vortex generators. A numerical parametric study has been carried out by varying Reynolds number based on the bulk mean velocity and the cylinder diameter, and the gap between the cylinders and the channel wall for some selected angular speeds. An immersed boundary method was employed to facilitate implementing the cylinders on a Cartesian grid system. No-slip condition is employed at all solid boundaries including the cylinders, and the flow is assumed to be periodic in the streamwise direction. The presence of the rotating circular cylinders arranged periodically in the streamwise direction causes a significant topological change of the flow, leading to increase of mean friction on the channel walls. More quantitative results as well as qualitative physical explanations are presented to justify the effectiveness of rotating cylinders to modify flow topology, which might be used to enhance heat transfer on the channel walls.

Flux Pinning in $MgB_2$ Film with Columnar Grains (기둥형 결정립 구조를 지닌 $MgB_2$ 박막에서 자속고정 현상)

  • Kim, D.H.;Kim, H.Y.;Hwang, T.J.;Lee, S.H.;Seong, W.K.;Kang, W.N.
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.173-176
    • /
    • 2008
  • [ $MgB_2$ ] films grown by hybrid physical chemical vapor deposition under appropriate growth conditions commonly exhibit columnar grain structure. The grain boundaries between adjacent columnar grains have been reported to be good flux pinning centers. In this work, we measured the angular dependence of critical current density ($J_c$) and observed the enhanced flux pinning when an external magnetic field was aligned parallel to the columnar direction. This $J_c$ was almost comparable to the $J_c$ for intrinsic pinning case up to 1 T at low temperatures, indicating that grain boundary pinning is very effective. At high fields, however, $J_c$ decreased rapidly resulting from the fact that the density of flux pinning centers provided by grain boundaries was outnumbered by the flux density.

  • PDF

Acoustic Source Power Control and Global Noise Reduction by Selection of Distribution and Impedance of Absorptive Materials in Acoustically Small Enclosures (흡음재의 배치와 임피던스 선정을 통한 음원 방사파워 제어와 전역 소음 감소)

  • 김양한;조성호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.668-674
    • /
    • 2004
  • The possibility of global noise reduction by the sound power control through selection of distribution and impedance of absorptive materials is discussed. It is necessary to investigate the relation between the global sound energy in the field and the total sound power radiated by sources. In the previous work,$^{(1.2)}$ the authors presented a useful design method to change boundary condition that can be useful to reduce noise in acoustically small enclosures. Changing boundary condition Is related to not only enclosure’s geometrical shape but also acoustical treatment on walls for example, attaching of impedance patches (ex: absorptive material). In many practical situations, we often meet situation to change acoustical treatment on walls. The possibility of total acoustic potential energy(globa1 noise) reduction by acoustic source power control is examined in an acoustically small cavity Using acoustic energy balance equation, the relation between global noise control performance and absorptive material’s arrangement/impedance is deduced. Numerical simulation is performed to interpret its physical meaning in terms of absorbent’s distribution and impedance.

An Advanced Study on the Development of Marine Lifting Devices Enhanced by the Blowing Techniques

  • Ahn Haeseong;Yoo Jaehoon;Kim Hyochul
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.4
    • /
    • pp.1-9
    • /
    • 2004
  • High lifting devices used for control purposes have received much attention in the marine field. Hydrofoils for supporting the hull, roll stabilizer fins for developing the motion damping performance, rudders for maneuverability are the well-known devices. In the present study, the ability of the rudder with flap to produce high lift was analyzed. The boundary layer control, one of the flow control techniques, was adopted. Especially, to build the blown flap, a typical and representative type of a boundary layer control, a flapped rudder was designed and manufactured so that it could eject the water jet from the gap between the main foil and the flap to the flap surface tangentially. And it was tested in the towing tank. Simultaneously, to know the information about the 2-dimensional flow field, a fin model with similar characteristics as the rudder model applicable for the motion control was made and tested in the cavitation tunnel. In addition, local flow measurements were carried out to obtain physical information, for example, a surface pressure measurement and flow visualization around the flap. And CFD simulation was used to obtain information difficult to collect from the experiment about the 2-dimensional flow.

Free Vibration of Radially Multi-Delaminated Beams (방사형 다층간분리된 보의 자유진동)

  • 이성희;마석오;한병기;박대효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.25-32
    • /
    • 2002
  • Free vibration analysis of radialiy multi-delaminated beams with through-the-width multi-delamination is performed in the present study. The multiple delaminations are considered to be in a radial manner through the thickness from the top surface of the beam. The natural frequencies of the radially multi-delaminated beams are calculated from a new algorithm that is based on the single compound delaminated beam model. That is, beams with radial multi-delaminations are regarded as the sum of a single compound delamlnated beam that is the single sub-delaminated beam from the top surface of global beam. Each result of frequency equation for the single delaminated beam with unknown boundary conditions obtained through continuity conditions Is updated to the next one, With these sequential operations, the final frequency equation of radially multi-delaminated beams is obtained for both ends boundary conditions of global beam. The numerical results carried out for the beams are compared with those of some references to give the reliance on the proposed algorithm and to investigate the effects of the shape, number, size of multi-delaminations on the natural frequency. Compared with the other previously presented model, the proposed algorithm is more flexible in modeling and formulating as the total array size of frequency equation is always four by four. Therefore, the proposed algorithm will reduce the effort of user in formulating the physical model to the numerical model.

  • PDF

Poly-Si Cell with Preferential Grain Boundary Etching and ITO Electrode

  • Lim, D.G.;Lee, S.E.;Park, S.H.;Yi, J.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.125-131
    • /
    • 1999
  • This paper deals with a novel structure of poly-Si solar cell. A grain boundary(GB) of poly-Si acts as potential barrier and recombination center for photo-generated carriers. To reduce unwanted side effects at the GB of poly-Si, we employed physical GB removal of poly-Si using chemical solutions. Various chemical etchants such as Sirtl, Yang, Secco, and Schimmel were investigated for the preferential GB etching. Etch depth about 10 ${\mu}m$ was achieved by a Schimmel etchant. After a chemical etching of poly-Si, we used $POCl_3$ for emitter junction formation. This paper used an easy method of top electrode formation using a RF sputter grown ITO film. ITO films with thickness of 300 nm showed resistivity of $1.26{\times}10^{-4}{\Omega}-cm$ and overall transmittance above 80%. Using a preferential GB etching and ITO top electrode, we developed a new fabrication procedure of poly-Si solar cells. Employing optimized process conditions, we were able to achieve conversion efficiency as high as 16.6% at an input power of 20 $mW/cm^2$. This paper investigates the effects of process parameters: etching conditions, ITO deposition factors, and emitter doping densities in a poly-Si cell fabrication procedure.

  • PDF

Flow and Heat Transfer Analysis of Copper-water Nanofluid with Temperature Dependent Viscosity Past a Riga Plate

  • Ahmad, A.;Ahmed, S.;Abbasi, F.M.
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.181-187
    • /
    • 2017
  • Flow of electrically conducting nanofluids is of pivotal importance in countless industrial and medical appliances. Fluctuations in thermophysical properties of such fluids due to variations in temperature have not received due attention in the available literature. Present investigation aims to fill this void by analyzing the flow of copper-water nanofluid with temperature dependent viscosity past a Riga plate. Strong wall suction and viscous dissipation have also been taken into account. Numerical solutions for the resulting nonlinear system have been obtained. Results are presented in the graphical and tabular format in order to facilitate the physical analysis. An estimated expression for skin friction coefficient and Nusselt number are obtained by performing linear regression on numerical data for embedded parameters. Results indicate that the temperature dependent viscosity alters the velocity as well as the temperature of the nanofluid and is of considerable importance in the processes where high accuracy is desired. Addition of copper nanoparticles makes the momentum boundary layer thinner whereas viscosity parameter does not affect the boundary layer thickness. Moreover, the regression expressions indicate that magnitude of rate of change in effective skin friction coefficient and Nusselt number with respect to nanoparticles volume fraction is prominent when compared with the rate of change with variable viscosity parameter and modified Hartmann number.

An Application of Multi-Objective Global Optimization Technique for Internally Finned Tube (휜형 원형관의 형상 최적화를 위한 다목적 전역 최적화 기법의 응용)

  • Lee, Sang-Hwan;Lee, Ju-Hee;Park, Kyoung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.10
    • /
    • pp.938-946
    • /
    • 2005
  • Shape optimization of internally finned circular tube has been peformed for periodically fully developed turbulent flow and heat transfer. The physical domain considered in this study is very complicated due to periodic boundary conditions both streamwise and circumferential directions. Therefore, Pareto frontier sets of a heat exchanger can be acquired by coupling the CFD and the multi-objective genetic algorithm, which is a global optimization technique. The optimal values of fin widths $(d_1,\;d_2)$ and fin height (H) are numerically obtained by minimizing the pressure loss and maximizing the heat transfer rate within ranges of $d_1=0.2\sim1.5\;mm,\;d_2=0.2\sun1.5\;mm,\;and\;H=0.2\sim1.5\;mm$. The optimal values of the design variables are acquired after the fifth generation and also compared to those of a local optimization algorithm for the same geometry and conditions.