• Title/Summary/Keyword: Phthalic compounds

Search Result 17, Processing Time 0.023 seconds

Synthesis and Anticonvulsant Evaluation of N-Substituted-Isoindolinedione Derivatives

  • Abdel-Hafez, Atef Abdel-Monem
    • Archives of Pharmacal Research
    • /
    • v.27 no.5
    • /
    • pp.495-501
    • /
    • 2004
  • A series of N-substituted-1,3-isoindolinedione derivatives (2-16) were synthesized for the purpose of defining the effect of N-substitution on the anticonvulsant activity of these derivatives. The target compounds (2-16) were obtained by condensation of phthalic anhydride with the corresponding amine derivative. The structures of the synthesized derivatives (2-16) were confirmed by means of IR, $^1$H-NMR, $^{13}$ C-NMR, MS and elemental analyses. The anticonvulsant activity of all compounds (2-16) were evaluated by subcutaneous pentylenetetrazole seizure threshold test at doses of 0.2, 0.4 and 0.8 mmol/kg compared with sodium valproate as a positive control. Their neurotoxicity were determined by the rotorod test. Many of the present series of compounds showed good anticonvulsant activity at the tested doses, as compared to sodium valproate. Three of them (4, 6 and 11) exhibited 100 % protection against convulsions, neurotoxicity and death at all tested doses. Out of the series, two compounds (12 and 13) were completely inactive with 100% mortality. 3-(p-chlorophenyl)-4-(1 ,3-dioxo-2,3-dihydro-1 H-2-isoindolyl) butanoic acid derivative (11) has emerged as the most active compound which is 20 times more active than valproate with ED$_{50}$ 8.7, 169 mg/kg; TD$_{50}$ 413, 406 mg/kg and PI 47.5, 2.4. The results revealed the importance of the combination of baclofenic and phthalimide moieties (compound 11) as a promising anticonvulsant candidate.

Adsorption of Organic Compounds onto Mineral Substrate Prepared from Oyster Shell Waste

  • Jeon, Young-Woong;Jo, Myung-Chan;Noh, Byeong-Il;Shin, Choon-Hwan
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_2
    • /
    • pp.79-88
    • /
    • 2001
  • Humic acids react with chlorine to produce Trihalomethanes(THMs), known as carcinogens, during disinfection, the last stage in water purification. Currently, the removal of organic humic acids is considered the best approach to solve the problem of THM formation. Accordingly, the current study examined the adsorption of organic compounds of humic acids onto an inorganic carrier prepared from oyster shell waste. The adsorbent used was activated oyster shell powder(HAP) and silver ion-exchanged oyster shell powder(HAP-Ag), with CaCO$_3$ as the control. The adsorbates were phthalic acid, chelidamic acid, catechol, dodecylpyridinium chloride(DP), and 2-ethyl phenol(2-EP). The adsorption experiments were carried out in a batch shaker at $25^{\circ}C$ for 15 hours. The equilibrium concentration of the adsorbate solution was analyzed using a UV spectrophotometer and the data fitted to the Langmuir isotherm model. Since the solution pH values were found to be greater than the pKa values of the organic compounds used as adsorbates, the compounds apparently existed in ionic form. The adsorptive affinities of the organic acid and phenolic compounds varied depending on the interaction of electrostatic forces, ion exchange, and chelation. More carboxylic acids and catechol, rather than DP and 2-EP, were adsorbed onto HAP and HAP-Ag. HAP and HAP-Ag exhibited a greater adsorptive affinity for the organic compounds than CaCO$_3$, used as the control.

  • PDF

Insecticidal Activity of Chinese Honeysuckle, Quisqualis indica Extracts against Scale Insects (사군자추출물의 깍지벌레류에 대한 살충활성)

  • Song, Jin Sun;Lee, Chae Min;Choi, Young Hwa;Lee, Dong Woon
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.2
    • /
    • pp.104-114
    • /
    • 2014
  • Scale insects heavily damaged many agricultural crops and trees in urban and forest areas. This study was conducted to carry out alternative control methods for environmentally friendly control of scale insects. Hot water extract of Quisquali indica produced high mortality against the black pine bast scale, Matsucoccus thunbergianae in previously experiment. Methanol extract obtained from fruit of Q. indica was successively fractionated using hexane, chloroform, ethyl acetate, buthanol and water which were examined by exposing for their insecticidal activity against four Cocoidea species (Eriococcus lagerstroemiae, Ceroplastes japonicus, Crisicoccus pini and Planococcus citri) in laboratory. Hexane fraction gave the highest insecticidal activity against scale insect pest. GC-mass analysis confirmed that the main compounds of Q. indica were alpha-pinene, methyl palmitate, eugenol, methyl myristate, phthalic acid mono(2-ethylhexyl)ester and palmitic acid. Among those compounds, ${\alpha}$-pinene was included 10 hexane subfractions. $LC_{50}$ of ${\alpha}$-pinene was 0.0114 ppm against 2nd instar of E. lagerstroemiae. These results suggest that Q. indica extracts might be used as an alternative control agent of scale insects.

Residue levels of phthalic acid esters (PAEs) and diethylhexyl adipate(DEHA) in various industrial wastewaters (업종별 산업폐수 중 프탈산에스테르와 디에틸헥실아디페이트의 잔류수준)

  • Kim, Hyesung;Park, Sangah;Lee, Hyeri;Lee, Jinseon;Lee, Suyeong;Kim, Jaehoon;Im, Jongkwon;Choi, Jongwoo;Lee, Wonseok
    • Analytical Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.57-64
    • /
    • 2016
  • Many phthalic acid esters (PAEs), including DMP, DEP, DBP, BBP, and DEHP, as well as DEHA are widely used as plasticizers in plastics. An analytical method was developed and used to analyze these compounds at 41 industrial facilities. The coefficient of determination (R2) for each constructed curve was higher than 0.98. The method detection limit (MDL) values were 0.4–0.7 μg/L for PAEs and 0.6 μg/L for DEHA. In addition, the recovery rate was shown to be 77.0–92.3%, while the relative standard deviation was shown to be in the range of 5.8-10.5%. DMP (n = 3), DEP (n = 2), DBP (n = 2), BBP (n = 2), and DEHA (n = 3) were detected in the range of 2.2-11.1% in the influent. DEHP was a predominant compound and was detected at > MDL in both the influent (n = 16, 35.6%) and the effluent (n = 4, 10.0%) at a high removal efficiency (92–100%). The highest levels of residue in industrial wastewater influent were 137.4 μg/L of DEHP at plastic products manufacturing facility, 12.5 μg/L of DEHA at a chemical manufacturing facility, and 14.0 μg/L of DEP at an electronics facility. The highest concentration of effluent was 12.5 μg/L of DEHP at a chemical manufacturing facility, which indicated that the effluent was below the allowable concentration (800 μg/L). Therefore, the levels of PAEs and DEHA that are discharged into nearby streams could not influence the health of the ecosystem.

Studies on the effect of phthalimido methyl-O,O-dimethyl-phosphorodithioate (Imidan) and its possible metabolites on the growth of rice plant (Phthalimido methyl-O,O-dimethyl phosphorodithioate (Imidan)과 그의 대사물질(代謝物質)이 수도(水稻) 생육(生育)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Lee, Sung-Hwan;Lee, Dong-Suk;Lee, Jae-Koo
    • Applied Biological Chemistry
    • /
    • v.7
    • /
    • pp.105-117
    • /
    • 1966
  • This experiment was conducted to investigate the effet of phthalimido-methyl-O,O-dimethyl-phosphorodithioate (Imidan) known as an acaricide and its possible metabolic products on the growth of plant, when sprayed on the leaves of rice plant. The results are summarized as follows. 1) Possible metabolic products of Imidan, the following compounds were synthesized or recrystallized for the present experiment a) N-Hydroxymethyl phthalimidem b) Phthalimide c) Phthalamidic acid d) Phthalic acid e) Anthranilic acid f) p-Amino benzoic acid g) p-Hydroxy benzoic acid h) Benzoic acid 2) Among the above materials, a), c), d), e), and Imidan were dissolved in a buffer solution respectively to be 10 and 20 p.p.m. and tested with the wheat coleoptile straight growth method. According to the results, Imidan inhibited the growth of coleoptile in both 10 and 20 p.p.m., whereas the others showed much better growth than the control, especially phthalamidic acid in 10 p.p.m. It appears that Imidan itself inhibits the coleoptile growth, whereas the metabolites derived from Imidan through various metabolisms, including hydrolysis in plant tissues show growth-regulating activity. (refer: Table 1, Fig. 1) 3) 20, 100 and 200 p.p.m. solutions of Imidall emulsion in xylene f·ere prepared. The lengths of shoot and root of rice seeds germinated on the re-respective media were measured after 12 days. The data showed that root was much more elongated in Imidan 20 p.p.m., whereas shoot in Imidan 100 p.p.m., respectively, than in the xylene control. An interesting finding was that xylene used as solvent had a tendency to inhibit seriously the root growth of rice seed. (refer: Table 2,5). 4) The emulsions of concentrations in 10, 25, 50 and 100 p.p.m's of control, Imidan, N-hydroxy methyl phthalimide, anthranilic acid, and phthalmide, respectively, were sprayed twice on the rice plant on pot. After a certain period of time lengths of rice culms were measured, showing that plots treated with Imidan and N-hydroxy methyl phthalimide exhibited much more growth than those of control and the others. 5) Loaves and stems of rice plant were sampled and extracted with dried acetone at the intervals of 3-, 5-, 7-, and 14 days after treated with Imidan 250 p.p.m. emulsion. This sample extracted with acetone was purified by means of prechromatographic purification method with acetonitrile and paperchromatographed to detect the following metabolic products. Imidan (Rf: 0.97-0,98), N-hydroxy-methyl phthalimide (Rf: 0.87) phthalimide (Rf: 0.86-0.87), phthalamidic acid (Rf: 0.13-0.14), phthalic acid (Rf: 0.02-0.03), benzoic acid (Rf: 0.42-0.43), p-amino benzoic acid or p-hydroxy benzoic acid (Rf: 0.08-0.09), and unidentified compounds (Rf: 0.73, 0.59, 0.33, 0.23. 0.07). In addition, in the early stages, such as 3- and 5 days nonhydrolyzed Imidan and its first hydrolytic product, N-hydroxymethyl phthalimide were detected in relatively large amounts, whereas in the last stages of 7- and 14 days due to further decomposition, the afore-mentioned two materials were reduced in the amount and p-hthalic, phthalamidic, benzoic, and p-Hydroxy benzoic, or p-Amino benzoic acids were detected in a considerably large amount. It is, therefore, believed that most of Imidan applied to the leaves of rice plant may be decomposed within almost 14 days. In the light of above observations it is considered that Imidan itself is not involved in plant growth regulating activity, whereas various phthaloyl derivatives produced in the course of metabolism (namelr, enzymic action) in plant tissues may have such effect.

  • PDF

Effect of Lithium Chloride on the Borane Reduction of Organic Compound (보란-염화리튬에 의한 유기화합물의 환원반응)

  • Nung Min Yun;Jin Soon Cha
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 1978
  • The effect of lithium chloride on the borane reduction of organic compounds was studied for three ketones, seven acid derivatives, three epoxides and cyclohexene in tetrahydrofuran at $0^{\circ}$. When compared with borane itself, borane-lithium chloride system enhanced the rates of reductions markedly of 2-heptanone, acetophenone, benzoyl chloride, phthalic anhydride, and three epoxides, whereas the reductions of benzophenone, four esters and cyclohexene showed little or no effect. $BH_3$-LiCl (1 : 0.1) reduced styrene oxide in 2 hr at $0^{\circ}$ to give 94.2 % yield of alcohols, 1-to 2-phenylethanol ratio being 60.8 to 39.2. And in the reduction of cyclohexene oxide, $BH_3$-LiCl (1 : 0.1) gave a quantitative yield of cyclohexanol in 2 hr at $0{\circ}$, however $BH_3$-LiCl (1 : 1) gave 58 % cyclohexanol and 42 % 2-chlorocyclohexanol. In the reduction of cyclohexene oxide, lithium nitrate showed no rate enhancement even when the salt was added in large excess. A formation of lithium chloroborohydride in the$BH_3$-LiCl system is suggested.

  • PDF

Hepatotoxicity and nephrotoxicity of saponin-enriched extract of Asparagus cochinchinensis in ICR mice

  • Sung, Ji Eun;Choi, Jun Young;Kim, Ji Eun;Lee, Hyun Ah;Yun, Woo Bin;Park, Jin Ju;Kim, Hye Ryeong;Song, Bo Ram;Kim, Dong Seob;Lee, Chung Yeoul;Lee, Hee Seob;Lim, Yong;Hwang, Dae Youn
    • Laboraroty Animal Research
    • /
    • v.33 no.2
    • /
    • pp.57-67
    • /
    • 2017
  • The inhibitory effects of Asparagus cochinchinensis against inflammatory response induced by lipopolysaccharide (LPS), substance P and phthalic anhydride (PA) treatment were recently reported for some cell lines and animal models. To evaluate the hepatotoxicity and nephrotoxicity of A. cochinchinensis toward the livers and kidneys of ICR mice, alterations in related markers including body weight, organ weight, urine composition, liver pathology and kidney pathology were analyzed in male and female ICR mice after oral administration of 150, 300 and 600 mg/kg body weight/day saponin-enriched extract of A. cochinchinensis (SEAC) for 14 days. The saponin, total flavonoid and total phenol levels were found to be 57.2, 88.5 and 102.1 mg/g in SEAC, respectively, and the scavenging activity of SEAC gradually increased in a dose-dependent manner. Moreover, body and organ weight, clinical phenotypes, urine parameters and mice mortality did not differ between the vehicle and SEAC treated group. Furthermore, no significant alterations were measured in alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), blood urea nitrogen (BUN) and the serum creatinine (Cr) in the SEAC treated group relative to the vehicle treated group. Moreover, the specific pathological features induced by most toxic compounds were not observed upon liver and kidney histological analysis. Overall, the results of the present study suggest that SEAC does not induce any specific toxicity in the livers and kidneys of male and female ICR mice at doses of 600 mg/kg body weight/day.