• 제목/요약/키워드: Phthalazinone

검색결과 6건 처리시간 0.02초

Some Pyridazinone and Phthalazinone Derrivatives and Their Vasodilator Activities

  • Seref Demirayak;Ismai Kayagil;Kevser Erol;Basar Sirmagul;Ahmet Cagri Karaburun
    • Archives of Pharmacal Research
    • /
    • 제27권1호
    • /
    • pp.13-18
    • /
    • 2004
  • In this study, 6-[( 4-arylidene-2-phenyl-5-oxoimidazolin-1-yl)phenyl]-4,5-dihydro-3(2H)-pyridazinone and 4-[(4-arylidene-2-phenyl-5-oxoimidazolin-1-yl)phenyl]-1(2H)-phthalazinone derivatives were synthesized by reacting 6-(4-aminophenyl)-4,5-dihydro-3(2H)-pyridazinone or 4-(4-aminophenyl)-1(2H)-phthalazinone compound with different 4-arylidene-2-phenyl-5(4H)-oxazolone derivatives. The vasodilator activities of the compounds were examined both in vitro and in vivo. Some pyridazinone derivatives showed appreciable activity.

Synthesis and Characterization of Sulfonated Poly(phthalazinone ether sulfone)(sPPES)/Silica Membrane for Proton Exchange Membrane Materials

  • Kim, Dae Sik;Park, Ho Bum;Nam, Sang Young;Rhim, Ji Won;Lee, Young Moo
    • Korean Membrane Journal
    • /
    • 제6권1호
    • /
    • pp.44-54
    • /
    • 2004
  • Organic-inorganic composite membranes based on sulfonated poly(phthalazinone ether sulfone) (sPPES)/silica hybrid were prepared using the sol-gel process under acidic conditions. The sulfonation of PPES with concentrated sulfuric acid as sulfonation agent was carried out to prepare proton exchange membrane material. The behaviors of the proton conductivity and methanol permeability are depended on the sulfonation time (5-100 hr). The hybrid membranes composed of highly sulfonated PPES (IEC value: 1.42 meq./g) and silica were fabricated from different silica content (5-20 wt%) in order to achieve desirable proton conductivity and methanol permeability demanded for fuel cell applications. The silica particles within membranes were used for the purpose of blocking excessive methanol cross-over and for forming the path way to transport of the proton due to absorbing water molecules with ≡SiOH on silica. The presence of silica particles in the organic polymer matrix results in hybrid membranes with reduced methanol permeability and improved proton conductivity.

4-염화페닐 아세트산을 이용한 염산 아젤라스틴의 합성 (Synthesis of Azelastine.HCl from 4-Chlorophenyl Acetic Acid)

  • 지현;정노희
    • 한국응용과학기술학회지
    • /
    • 제29권3호
    • /
    • pp.429-434
    • /
    • 2012
  • 본 연구에서는 H1-길항체로 알려진 항히스타민제의 일종인 염산 아젤라스틴을 합성하기 위하여 phthalic anhydride, 4-chlorophenylacetic acid, hydrazine 2HCl를 이용하여 4단계 반응을 거쳐 합성하였다. 첫 번째 반응은 카르복실기와 히드록실기가 제거되는 반응이고, 두 번째 반응은 3-(4-chlorobenzylidene)phthalide의 비누화 반응이다. 세 번째 반응은 일차아민의 친핵성 첨가반응이 일어나는 반응이며, 네 번째 반응은 N-methyl-1-aza-bicyclo[3,2,0]heptane에 세 번째 반응의 생성물을 첨가하여 반응시키면 4-(4-chlorobenzyl)-1-(2H)phthalazinone가 합성되는 반응이다. 합성한 생성물을 FT-IR, $^1H$-NMR을 이용하여 분석하였고, 80%의 수율로 합성물을 얻었다.

Preparation and Characterization of Sulfonated Poly(phthalazinone ether sulfone ketone) (SPPESK)/Silica Hybrid Membranes for Direct Methanol Fuel Cell Applications

  • Kim, Dae-Sik;Shin, Kwang-Ho;Park, Ho-Bum;Lee, Young-Moo
    • Macromolecular Research
    • /
    • 제12권4호
    • /
    • pp.413-421
    • /
    • 2004
  • Sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) membranes and sol-gel derived SPPESK/silica hybrid membranes have been investigated as potential polymer electrolyte membranes for direct methanol fuel cell (DMFC) applications. In comparison with the SPPESK membrane, the SPPESK/silica membranes exhibited higher water content, improved proton conductivity, and lower methanol permeability. Notably, the silica embedded in the membrane acted as a material for reducing the fraction of free water and as a barrier for methanol transport through the membrane. From the results of proton conductivity and methanol permeability studies, we suggest that the fractions of bound and free water should be optimized to obtain desirable proton conductivities and methanol permeabilities. The highly sulfonated PPESK hybrid membrane (HSP-Si) displayed higher proton conductivity (3.42 ${\times}$ 10$^2$ S/cm) and lower methanol permeability (4.15 ${\times}$ 10$\^$7/ $\textrm{cm}^2$/s) than those of Nafion 117 (2.54 ${\times}$ 10$^2$ S/cm; 2.36 ${\times}$ 10$\^$6/ $\textrm{cm}^2$/s, respectively) at 30$^{\circ}C$. This characteristic of the SPPESK/silica membranes is desirable for future applications related to DMFCs.

Synthesis of 4, 5, 6, 7-Tetraphenyl-8-(substituted)-3 (2H)-phthalazinone Derivatives Likely to Posses Antihypertensive Activity

  • F.A. Yassin;B.E. Bayoumy;A.F. El-Farargy
    • Bulletin of the Korean Chemical Society
    • /
    • 제11권1호
    • /
    • pp.7-10
    • /
    • 1990
  • The interaction of tetraphenylphthalic anhydride with o-chlorotoluene under Friedel-Craft condition gives 2-(4-chloro-3-methyl)benzoyl-3,4,5,6-tetraphenyl benzoic acid(1), which on reaction with hydrazine derivatives gave phthalazinones (2a-d). The behaviour of (2a) towards carbon electrophiles and carbon nucleophiles has been investigated. The chlorophthalazinones (4a) also has been synthesized from the action of $PCl_5/POCl_3$ on (2a). The behaviour of (4a) towards nitrogen, and oxygen nucleophiles also have been described.

아젭틴 정(염산아젤라스틴 1 mg)에 대한 아젤라 정의 생물학적 동등성 (Bioequivalence of Azela Tablet to Azeptin Tablet (Azelastine Hydrochloride 1 mg))

  • 조혜영;윤지훈;서유리;오인준;이성관;문재동;이용복
    • Journal of Pharmaceutical Investigation
    • /
    • 제31권1호
    • /
    • pp.57-62
    • /
    • 2001
  • Azelastine, a phthalazinone derivative, is an antiallergic agent which demonstrates histamine $H_1-receptor$ antagonist activity and also inhibits histamine release from mast cells following antigen and non-antigen stimuli. Thus, azelastine may be useful in the management of both asthma and allergic disorders. The purpose of the present study was to evaluate the bioequivalence of two azelastine hydrochloride tablets, $Azeptin^{TM}$ (Bu Kwang Pharmaceutical Co., Ltd.) and $Azela^{TM}$ (Kyung Dong Pharmaceutical Co., Ltd.), according to the guidelines of Korea Food and Drug Administration (KFDA). Eighteen normal male volunteers, $22.44{\pm}2.01$ years in age and $61.99{\pm}6.18\;kg$ in body weight, were divided into two groups and a randomized $2{\times}2$ cross-over study was employed. After two tablets containing 1 mg of azelastine hydrochloride per tablet were orally administered, blood was taken at predetermined time intervals and the concentrations of azelastine in serum were determined using HPLC with fluorescence detector. Pharmacokinetic parameters such as $AUC_t$, $C_{max}\;and\;T_{max}$ were calculated and ANOVA test was utilized for the statistical analysis of the parameters. The results showed that the differences in $AUC_t$, $C_{max}\;and\;T_{max}$ between two tablets were -6.45%, -2.60% and -7.14%, respectively, when calculated against the $Azeptin^{TM}$ tablet. The powers $(1-{\beta})$ for $AUC_t\;and\;C_{max}$ were 96.65% and 88.47%, respectively. Minimum detectable differences $({\Delta})$ at ${\alpha}=0.05$ and $1-{\beta}=0.8$ were less than 20% (e.g., 14.40% and 17.65% for $AUC_t\;and\;C_{max}$, respectively). The 90% confidence intervals were within ${\pm}20%$ (e.g., $-14.87{\sim}1.97$ and $-12.92{\sim}7.72$ for $AUC_t\;and\;C_{max}$, respectively). Two parameters met the criteria of KFDA for bioequivalence, indicating that $Azela^{TM]$ tablet is bioequivalent to $Azeptin^{TM}$ tablet.

  • PDF