• Title/Summary/Keyword: Photovoltaic pumping

Search Result 14, Processing Time 0.028 seconds

Implementation of a Stand-alone Photovoltaic Pumping System with Maximum Power Point Tracking

  • Zhengming Zhao;Kunlun Chen;Liqiang Yuan
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.635-638
    • /
    • 2001
  • Photovoltaic (PV) pumping systems with maximum power point tracking (MPPT) technique aims at obtaining the highest possible power to the pump under various insolation and temperature, thus overcomes the mismatch between the photovoltaic panel and the pumping load. A simple method of tracking the maximum power points and forcing the system to operate close to these points is presented in this paper. The MC68HC908GP32 micro control unit (MCU) is employed to implement the proposed MPPT controller. Experimental results will also show the performances of the photovoltaic pumping system with the MPPT technique.

  • PDF

Study and Control of Photovoltaic Water Pumping System

  • Khlifi, Mohamed Arbi
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.117-124
    • /
    • 2016
  • Solar photovoltaic pumping system is one of most important of renewable energy applications especially in rural areas. Besides, the control strategy for standalone solar pumping system based on induction motor and without DC/DC converter has been widely studied and discussed in the literature. This topology is of great concern due its economic issues, especially when a standard frequency converter (SFCs) with scalar control is used instead of a dedicated PV inverter. This paper proposes an external control module to generate SFCs frequency reference in order to ensure both maximum power point tracking (MPPT). We present method of modeling and control of photovoltaic pumping system based centrifugal pump controlled by new improved incremental conductance in order to optimize the price and operation of pumping system this MPPT algorithm have many advantages like can be eliminate proportional integral controller It is a low cost solution since it requires no additional power equipment. The induction motor driven pump that is powered by a solar array is controlled by the indirect field oriented control (IFOC). The effectiveness of the proposed approach is illustrated by simulations carried out under Matlab Software. The experimental results are compared with simulation results.

Performance Analysis of Cost Effective Portable Solar Photovoltaic Water Pumping System

  • Parmar, Richa;Banerjee, Chandan;Tripathi, Arun K.
    • Current Photovoltaic Research
    • /
    • v.9 no.2
    • /
    • pp.51-58
    • /
    • 2021
  • Solar water pumping system (SWPS) is reliable and beneficial for Indian farmers in irrigation and crop production without accessing utility. The capability of easy installation and deployment, makes it an attractive option in remote areas without grid access. The selection of portable solar based pumps is pertaining to its longer life and economic viability due to lower running cost. The work presented in this manuscript intends to demonstrate performance analysis of portable systems. Consequent investigation reveals PSWS as the emerging option for rural household and marginal farmers. This can be attributed to the fact that, a considerable portion (around 45.7%) of the country's land is farmland and irrigation options are yet to reach farmers who entirely rely on rain water at present for harvesting of the crops. According to census 2010-2011 tube wells are the main source for irrigation amongst all other sources followed by canals. Out of the total 64.57-million-hectare net irrigation area, 48.16% is accounted by small and marginal holdings, 43.77% by semi-medium and medium holdings, and 8.07% by large holdings. As per 2015-16 census data, nearly 100 million farming households would struggle to make ends meet. The work included in this manuscript, presents the performance of different commercial brands and different technologies of DC surface solar water micro pumping systems have been studied (specifically, the centrifugal and reciprocating type pumps have been considered for analysis). The performance of the pumping systems has been analyzed and data is evaluated in terms of quantity of water impelled for specific head. The reciprocating pump has been observed to deliver the best system efficiency.

Design of Micro Water Supply System Using Solar Energy

  • Sharma, Ekisha;Khatiwada, Nawa Raj;Ghimire, Anish
    • Journal of Appropriate Technology
    • /
    • v.5 no.1
    • /
    • pp.8-17
    • /
    • 2019
  • Solar pumps, for water lift systems, is becoming popular in rural areas for supplying drinking water in dry seasons when its need is elevated. The development in technology has also made solar pumps readily available and cheap which has increased its demands. So, for scattered settlements having a limited budget for operation and maintenance costs, solar pump is preferred over grid connected electrical pumping systems. This primary objective of the study was to design a solar photovoltaic pumping drinking water supply system for a small health post which is about 45 km east from Kathmandu, the capital city of Nepal. The study also compared and verified the final design with the system's existing design prepared by a development agency. The water source for this study was a confined aquifer 115m below the surface. The water demand was calculated to be 11m3 per day. A 1500 kPa submersible pump attached to a motor was selected and installed. Along with that twelve solar panels, reservoir, transmission main and distribution main was designed. The outcomes conclude solar photovoltaic pumping water supply systems to be cost-effective with an estimated cost of only USD 0.84 million per MLD. Solar pumps require low maintenance and operation costs and its repairs can quickly be done by the local people. The study also shows that solar technology produces no sound, needs no fuel making it environmentally friendly.

Brushless DC Motor Control for Photovoltaic Water-Pumping System (PV Water Pumping 시스템을 위한 BLDC 모터 제어)

  • 김성남;최성호;조정민;전기영;이승환;한경희
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.50 no.3
    • /
    • pp.109-116
    • /
    • 2001
  • In this paper, we adapted BLDC motor to PV water pumping systems to maintain high efficiency in the wide speed area. Also, to design confidence we adapted the vector control that drive the maximum torque at each speed limit. We designed optimal gain value of current, speed and pressure PI controller. Inverter gate pulse used Space Vector PWM to reduce torque pulsation of BLDC motor. According to, it was improve general matters of high water storage tank method by direct water supply pumping method.

  • PDF

Photovoltaic System for SPIM Vector control (SPIM 벡터제어를 위한 태양광 발전 시스템)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Byung-Jin;Kim, Do-Yeon;Park, Ki-Tae;Choi, Jung-Hoon;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.295-299
    • /
    • 2007
  • This paper presents the photovoltaic(PV) water pumping system with a maximum power point tracking(MPPT). The wale- pumping system uses a variable speed single phase induction motor(SPIM) driven a centrifugal pimp by field oriented control(FOC) inverter. The MPPT using a DC-DC converter controlled the duty cycle to track maximum power from PV under different insolation conditions. The duty cycle directly relate with a flux producing current control($i_{ds}$). The FOC inverter uses a current control voltage source inverter(CC-VSI). The simulation results are shown that the characteristics and performance of drive system, which varies as each conditions of light by expresses in voltage ($V_{dq}$), current($I_{dq}$), speed of motor and torque.

  • PDF

Development of Stand-Alone Underground Water Pumping System using Photovoltaics System (태양광발전을 이용한 독립형 지하수 양수 시스템 개발)

  • Lee, Seung-Hun;Hwang, Jung-Hoon;Cho, Woon-Sik;Kim, Man-Il;Lee, Joon-Gee;Park, Moon-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.69-72
    • /
    • 2009
  • In this paper, the Stand-alone underground water pumping system was developed that is consist of Submersible Pump (AC type), Photovoltaic Array and Power converter by the application of solar energy. And also wish to introduce system that is possible to supply of drinking water or water for agriculture using solar energy at desertification area or a Off-grid area, interior etc. and operation test results. This system can use in deep tube well of 200m range with common Submersible Pump and maximized to the quantity of pumping through M.P.P.T control. Also system availability raised through apply various driving mode.

  • PDF

A Novel Photovoltaic Power Harvesting System Using a Transformerless H6 Single-Phase Inverter with Improved Grid Current Quality

  • Radhika, A.;Shunmugalatha, A.
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.654-665
    • /
    • 2016
  • The pumping of electric power from photovoltaic (PV) farms is normally carried out using transformers, which require heavy mounting structures and are thus costly, less efficient, and bulky. Therefore, transformerless schemes are developed for the injection of power into the grid. Compared with the H4 inverter topology, the H6 topology is a better choice for pumping PV power into the grid because of the reduced common mode current. This paper presents how the perturb and observe (P&O) algorithm for maximum power point tracking (MPPT) can be implemented in the H6 inverter topology along with the improved sinusoidal current injected to the grid at unity power factor with the average current mode control technique. On the basis of the P&O MPPT algorithm, a power reference for the present insolation level is first calculated. Maintaining this power reference and referring to the AC sine wave of bus bars, a sinusoidal current at unity power factor is injected to the grid. The proportional integral (PI) controller and fuzzy logic controller (FLC) are designed and implemented. The FLC outperforms the PI controller in terms of conversion efficiency and injected power quality. A simulation in the MATLAB/SIMULINK environment is carried out. An experimental prototype is built to validate the proposed idea. The dynamic and steady-state performances of the FLC controller are found to be better than those of the PI controller. The results are presented in this paper.

PV module manufacture for application of Building Integrated photovoltaic system (건물일체형 태양광발전시스템(BIPV) 적용을 위한 태양전지모듈 제조)

  • Kang Gi-Hwan;Yu Gwon-Jong;Han Deuk-Young;An Hyung-Geun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1465-1467
    • /
    • 2004
  • In this paper, deduced manufacturing condition of glass/glass curtain wall module and metal curtain wall module. From the results. lamination condition of glass/glass curtain wall module deduced optimum in pumping $time-120^{\circ}C$ 23min, slow $press-120^{\circ}C$. 300mmHg. 3min. standard $press-120^{\circ}C$. 200mmHg. 0.5min. fast $press-120^{\circ}C$. 100mmHg. 0.3min and $curing-140^{\circ}C$, 6min, and lamination condition of metal curtain wall module deduced optimum in pumping $time-120^{\circ}C$. 8min, slow $press-120^{\circ}C$, 700mmHg. 0.5min, standard $press-120^{\circ}C$, 600mmHg, 0.5min. fast $press-120^{\circ}C$, 100mmHg. 1.5min and $curing-140^{\circ}C$. 6min. This time. power uniformity of glass/glass curtain wall module and metal curtain wall module showed each ${\pm}2.7\%,\;{\pm}2.12\%$.

  • PDF

MPPT Control of PV Water Pumping Using BLDC Motor-Inverter (BLDC 모터용 인버터를 이용한 PV 양수펌프의 MPPT 제어)

  • 김성남;백승길;조정민;이승환;오봉환;이훈구;한경희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.6
    • /
    • pp.498-505
    • /
    • 2001
  • This paper shows how to design a global control of water pumping system using PV array, and tracked maximum power point of PV array only the inverter using the vector control of BLDC motor, and finding the relationships among the DC magnitudes and AC ones in order to omit the DC/DC converter. Conventional MPPT controller was unstable of reason of the ripple-current of DC link in three-phase invertor. Thus, in this paper the control algorithm of BLDC motor using $i_qs$ current is composed to improve the insecurity of conventional MPPT controller To prove the excellence of the proposed method, the contents of this paper is analyzed by means of simulation and testing for the results applying the method that J. A Domfnguez had applied to asynchronous motor to BLDC motor and that of the proposed method in this paper.

  • PDF