• 제목/요약/키워드: Photovoltaic power plants

검색결과 76건 처리시간 0.021초

제주도 지역별 대용량 태양광발전소들의 여름 피크타임 기여도 연구 (Contribution of Large-Scale PV Plants in the Respective Region of the Jeju Island to Electric Power during Summer Peak Times)

  • ;고석영;사공준;권훈;이개명
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1873-1878
    • /
    • 2017
  • Both the introduction of the Renewable Energy Portfolio Standard (RPS) system into the electric energy market in 2012 and a decrease in the cost of constructing photovoltaic (PV) power plants have been increasing the number of MW PV plants in South Korea. Jeju Island is located at the center of three nations, South Korea, China and Japan, and its provincial government declared in 2012 that the island will be a clean region where greenhouse gases are not emitted by 2030. The Jeju provincial government is now doing its best to install PV plants and wind farms to realize a carbon-free island. In this study we investigated contribution of MW PV plants to the power of the electric grid during summer peak times on Jeju Island. Mt. Halla the highest mountain in South Korea, is located at the center of Jeju Island, and we divided the island into four regions and carried out analyses of a total of 24 PV plants. The average contribution of the PV plants in the respective region to electric power of Jeju Island during summer peak times was investigated and compared with those of the other regions. The best average contribution during the 12.5% maximum load period was obtained from the PV plants in the western region, and the value was 33% during 2015 and 2016.

전기자동차 운행을 위한 태양광발전소 수요 예측 (Prediction of Demand for Photovoltaic Power Plants for Electric Vehicle Operation)

  • 최회균
    • 한국태양에너지학회 논문집
    • /
    • 제40권4호
    • /
    • pp.35-44
    • /
    • 2020
  • Currently, various policies regarding ecofriendly vehicles are being proposed to reduce carbon emissions. In this study, the required areas for charging electric vehicle (EV) batteries using electricity produced by photovoltaic (PV) power plants were estimated. First, approximately 2.4 million battery EVs, which represented 10% of the total number of vehicles, consume approximately 404 GWh. Second, the power required for charging batteries is approximately 0.3 GW, and the site area of the PV power plant is 4.62 ㎢, which accounts for 0.005% of the national territory. Third, from the available sites of buildings based on the region, Jeju alone consumes approximately 0.2%, while the rest of the region requires approximately 0.1%. Fourth, Seoul, which has the smallest available area of mountains and farmlands, utilizes 0.34% of the site for PV power plants, while the other parts of the region use less than 0.1%. The results of this study confirmed that the area of the PV power plant site for producing battery-charging power generated through the supply of EVs is very small. Therefore, it is desirable to analyze and implement more specific plans, such as efficient land use, forest damage minimization, and safe maintenance, to expand renewable energy, including PV power.

염전 병행 태양광 발전의 실증과 시뮬레이션 (Salt Farm Parallel Solar Power System:Field tests and Simulations)

  • 박종성;김봉석;김근호;이승민;임철현
    • Current Photovoltaic Research
    • /
    • 제7권4호
    • /
    • pp.121-124
    • /
    • 2019
  • In this research, the concept of a salt farm parallel solar power system, which produce salt and electricity at the same site, is proposed for the first time in the world. The concept is that large waterproof plates made by interconnected solar modules are installed at the bottom of the salt farm. The pilot system was successfully installed at a sea shore, and verified its feasibility as a solar power plant. For deeper understanding, simulations for power prediction of the system were carried out and compared with the field test results. The power generation of the salt farm parallel system is comparable to conventional solar power plants. The cooling effect by sea water contributes more to the increase in the crystalline silicon photovoltaic module performance than the absorption loss due to sea water by maintaining certain height above the module.

Resource Use Efficiency of Electricity Sector in the Maldives

  • SHUMAIS, Mohamed
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권1호
    • /
    • pp.111-121
    • /
    • 2020
  • The study measures the resource use efficiency of diesel based power generation in the Maldives and analyses factors which influence efficiency levels. Stochastic frontier analysis (SFA) technique is applied to data on 30 plants over two year period from 2016 to 2017. The study finds that technical efficiency scores varies from 0.44 to 0.98 across power plants. About 33 percent of the plants have scores below the mean technical efficiency score of 0.87. Empirical results indicate ownership and use of solar photovoltaic (PV) have an influence on improving efficiency levels. Privately owned power plants in resort islands obtained higher technical efficiency scores compared to public and community owned power plants. This is a significant finding as the first study that used power plants in tourist sector in a comparative study. Size of the power plants was not found significant, but relatively small installed capacities can also be efficient. This finding is important because in many inhabited islands installed capacities remain oversized compared to the load. The benchmarking exercise offers model power plants that are relatively efficient, for other power plants and policy makers in small islands to learn from.

철도분야 태양광 발전 적용 확대를 위한 설계 단계에서의 태양광 발전량 예측 연구 (A Study on Photovoltaic Power Generation Amount Forecast at Design Stage for Extended Application in the Field of Railways)

  • 유복종;이주
    • 한국철도학회논문집
    • /
    • 제20권2호
    • /
    • pp.182-189
    • /
    • 2017
  • 본 논문의 연구 목적은 저탄소 에너지화에 큰 비중을 차지하고 있는 태양광 발전 시스템의 철도분야 적용확대를 위한 설계 단계에서의 태양광 발전량 예측 연구로 실제 운영하고 있는 지평 태양광발전소를 대상으로 태양광 발전량 상용 예측 프로그램인 PVsyst를 활용하여 프로그램 기본 제공 NASA와 Meteonorm의 해외 기상정보를 이용한 연간 태양광 발전량 예측값과 기상청(KMA) 기상정보를 이용한 발전량 예측값을 비교하고, 한국전력거래소(KPX) 실제 발전량과의 비교 분석을 통해 태양광발전소 구축비의 적정성을 확보하여 철도분야의 태양광 발전 시스템 확대적용과 나아가 신기후 체제에 대응한 저탄소 에너지화에 기여하고자 한다.

A Case Study of Resolving Conflict in Energy Infrastructure Siting by the Solar PV Project

  • Lee, Jonghwan;Shin, Dong-hwi;Han, Soohee;Roh, Jae Hyung
    • Current Photovoltaic Research
    • /
    • 제8권3호
    • /
    • pp.79-85
    • /
    • 2020
  • The growing demand for new energy infrastructure has often been encountered with the difficulties of siting in power plants and electric transmission lines. Siting such large-scale and complex facilities produces so many-sided issues that it is highly necessary to develop an approach to resolving the related problems and conflicts. This paper introduces how the stakeholders have handled the issues and resolved conflicts with residents opposed the construction of 765 kV transmission line. The solar photovoltaic power generation, called "Hee-Mang Sunlight Power project", is used for persuading residents to agree with constructing high-voltage transmission line and sharing benefits. It is considered how the project performance such as generation output and resident's profits is and proposed what the project should be revised and supplement. The project is shown that the intractable spiting in energy systems can be smartly resolved with cost-effective institutional solutions instead of relatively expensive technical ones.

태양광 발전 패널 각도 제어에 따른 발전량 변화 (Power Generation Change According to Angle Control of Solar Power Plant Panel)

  • 한명희;우제택;이재환
    • 한국전자통신학회논문지
    • /
    • 제14권4호
    • /
    • pp.685-692
    • /
    • 2019
  • 본 논문은 태양광발전소의 최적 발전효율에 기여하는 패널 각도조절의 연관성을 연구하고자 설비구성이 동일한 2개의 발전단지를 대상으로 1개소는 정해진 각도로 분기별 각도변화를 주었고 1개소는 그대로 유지하여 8개월 간의 총발전량을 비교하여 고정형 태양광발전소 발전량과 고정가변형 태양광발전소의 발전효율 차이를 확인하고자 한다. 고정형 태양광발전소와 고정가변형 태양광발전소의 발전량 차이를 분석하여 발전 효율성을 높일 수 있는 운영 방법을 제안한다.

The power sector of Mongolia: Current status and future opportunities

  • Myagmarsuren, Baldorj
    • 한국태양광발전학회지
    • /
    • 제6권1호
    • /
    • pp.69-75
    • /
    • 2020
  • Mongolia is located between Russia and China in Central Asia. In coal-rich corners, both the energy and energy sectors of our country prevail. Mongolia has vast resources of renewable energy and limited hydropower plants, such as wind and solar. In their first iNDC (intended Nationally Determined Contributions) submitted in 2015, Mongolia has pledged to increase the share of renewables capacity to 20% by 2020, and 30% by 2030 while reducing their energy related GHG emissions.

결정질 실리콘 태양광 모듈의 Potential Induced Degradation 진단 분석

  • 오원욱;박노창;천성일
    • 한국태양광발전학회지
    • /
    • 제4권2호
    • /
    • pp.14-24
    • /
    • 2018
  • The potential induced degradation (PID) phenomenon of crystalline silicon photovoltaic (PV) modules has been often found in outdoor PV systems until recently since firstly reported in 2010. Many studies have been conducted about the mechanism and the preventive methods, but systematic diagnosis of the PID has not been applied on-site. This paper focuses on analysis of 5 categories and 10 PID diagnosis methods using the monitoring data, light current-voltage, dark current-voltage, infrared and electroluminescence. We expect to contribute to improvement of power generation through PID diagnosis and troubleshooting in PV plants.

  • PDF

Load Control between PV Power Plants and Diesel Generators

  • Mohamed Khalil Abdalla MohamedAli;AISHA HASSAN ABDALLA HASHIM;OTHMAN KHALIFA
    • International Journal of Computer Science & Network Security
    • /
    • 제24권6호
    • /
    • pp.33-40
    • /
    • 2024
  • Introducing renewable energy sources, such as wind and photovoltaic arrays, in microgrids that supply remote regions with electricity represents a significant leap in electricity generation. Combining photovoltaic panels and diesel engines is one of the most common ways to supply electricity to rural communities. Such hybrid systems can reduce the cost of electricity generation in these remote power systems because they use free energy to balance the power generated by diesel engines. However, the combination of renewable energy sources and diesel engines tends to complicate the sizing and control of the entire system due to the intermittent nature of renewable energy sources. This study sought to investigate this issue in depth. It proposes a robust hybrid controller that can be used to facilitate optimum power sharing between a PV power source and diesel generators based on the dynamics of the available PV energy at any given time. The study also describes a hybrid PV-diesel power plant's essential functional parts that produce electricity for a microgrid using a renewable energy source. Power control needs to be adjusted to reduce the cost of power generation.