• 제목/요약/키워드: Photovoltaic power forecasting

검색결과 20건 처리시간 0.026초

BiLSTM 기반의 설명 가능한 태양광 발전량 예측 기법 (Explainable Photovoltaic Power Forecasting Scheme Using BiLSTM)

  • 박성우;정승민;문재욱;황인준
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권8호
    • /
    • pp.339-346
    • /
    • 2022
  • 최근 화석연료의 무분별한 사용으로 인한 자원고갈 문제 및 기후변화 문제 등이 심각해짐에 따라 화석연료를 대체할 수 있는 신재생에너지에 대한 관심이 증가하고 있다. 특히 신재생에너지 중 태양광 에너지는 다른 신재생에너지원에 비해 고갈될 염려가 적고, 공간적인 제약이 크지 않아 전국적으로 수요가 증가하고 있다. 태양광 발전 시스템에서 생산된 전력을 효율적으로 사용하기 위해서는 보다 정확한 태양광 발전량 예측 모델이 필요하다. 이를 위하여 다양한 기계학습 및 심층학습 기반의 태양광 발전량 예측 모델이 제안되었지만, 심층학습 기반의 예측 모델은 모델 내부에서 일어나는 의사결정 과정을 해석하기가 어렵다는 단점을 보유하고 있다. 이러한 문제를 해결하기 위하여 설명 가능한 인공지능 기술이 많은 주목을 받고 있다. 설명 가능한 인공지능 기술을 통하여 예측 모델의 결과 도출 과정을 해석할 수 있다면 모델의 신뢰성을 확보할 수 있을 뿐만 아니라 해석된 도출 결과를 바탕으로 모델을 개선하여 성능 향상을 기대할 수도 있다. 이에 본 논문에서는 BiLSTM(Bidirectional Long Short-Term Memory)을 사용하여 모델을 구성하고, 모델에서 어떻게 예측값이 도출되었는지를 SHAP(SHapley Additive exPlanations)을 통하여 설명하는 설명 가능한 태양광 발전량 예측 기법을 제안한다.

Short-Term Photovoltaic Power Generation Forecasting Based on Environmental Factors and GA-SVM

  • Wang, Jidong;Ran, Ran;Song, Zhilin;Sun, Jiawen
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.64-71
    • /
    • 2017
  • Considering the volatility, intermittent and random of photovoltaic (PV) generation systems, accurate forecasting of PV power output is important for the grid scheduling and energy management. In order to improve the accuracy of short-term power forecasting of PV systems, this paper proposes a prediction model based on environmental factors and support vector machine optimized by genetic algorithm (GA-SVM). In order to improve the prediction accuracy of this model, weather conditions are divided into three types, and the gray correlation coefficient algorithm is used to find out a similar day of the predicted day. To avoid parameters optimization into local optima, this paper uses genetic algorithm to optimize SVM parameters. Example verification shows that the prediction accuracy in three types of weather will remain at between 10% -15% and the short-term PV power forecasting model proposed is effective and promising.

미세먼지의 영향을 고려한 머신러닝 기반 태양광 발전량 예측 (Prediction of Photovoltaic Power Generation Based on Machine Learning Considering the Influence of Particulate Matter)

  • 성상경;조영상
    • 자원ㆍ환경경제연구
    • /
    • 제28권4호
    • /
    • pp.467-495
    • /
    • 2019
  • 태양광 발전과 같은 신재생에너지의 불확실성은 전력계통의 유연성을 저해하며, 이를 방지하기 위해서는 정확한 발전량의 사전 예측이 중요하다. 본 연구는 미세먼지 농도를 포함한 기상자료를 이용하여 태양광 발전량을 예측하는 것을 목적으로 한다. 본 연구에서는 2016년 1월 1일부터 2018년 9월 30일까지의 발전량, 기상자료, 미세먼지 농도 자료를 이용하고 머신러닝 기반의 RBF 커널 함수를 사용한 서포트 벡터 머신을 적용하여 태양광 발전량을 예측하였다. 예측변수에 미세먼지 농도 반영 유무에 따른 태양광 발전량 예측 모델의 성능을 비교한 결과 미세먼지 농도를 반영한 발전량 예측 모델의 성능이 더 우수한 것으로 나타났다. 미세먼지를 고려한 예측 모형은 미세먼지를 고려하지 않은 예측 모형 대비 6~20시 예측 모형에서는 1.43%, 12~14시 예측 모형에서는 3.60%, 13시 예측 모형에서는 3.88%만큼 오차가 감소하였다. 특히 발전량이 많은 주간 시간대에 미세먼지 농도를 반영하는 모형의 예측 정확도가 더 뛰어난 것으로 나타났다.

A Novel Second Order Radial Basis Function Neural Network Technique for Enhanced Load Forecasting of Photovoltaic Power Systems

  • Farhat, Arwa Ben;Chandel, Shyam.Singh;Woo, Wai Lok;Adnene, Cherif
    • International Journal of Computer Science & Network Security
    • /
    • 제21권2호
    • /
    • pp.77-87
    • /
    • 2021
  • In this study, a novel improved second order Radial Basis Function Neural Network based method with excellent scheduling capabilities is used for the dynamic prediction of short and long-term energy required applications. The effectiveness and the reliability of the algorithm are evaluated using training operations with New England-ISO database. The dynamic prediction algorithm is implemented in Matlab and the computation of mean absolute error and mean absolute percent error, and training time for the forecasted load, are determined. The results show the impact of temperature and other input parameters on the accuracy of solar Photovoltaic load forecasting. The mean absolute percent error is found to be between 1% to 3% and the training time is evaluated from 3s to 10s. The results are also compared with the previous studies, which show that this new method predicts short and long-term load better than sigmoidal neural network and bagged regression trees. The forecasted energy is found to be the nearest to the correct values as given by England ISO database, which shows that the method can be used reliably for short and long-term load forecasting of any electrical system.

철도인프라용 태양광발전시스템 확대를 위한 기상정보 활용 발전량 예측 비교 연구 (Comparative Study to Predict Power Generation using Meteorological Information for Expansion of Photovoltaic Power Generation System for Railway Infrastructure)

  • 유복종;박찬배;이주
    • 한국철도학회논문집
    • /
    • 제20권4호
    • /
    • pp.474-481
    • /
    • 2017
  • 국내에서 태양광 발전설비 설계 시 설계 단계에서의 태양광발전소의 발전량 예측은 국내 현장임에도 불구하고 PVsyst, PVWatts 등 해외 발전량 예측 프로그램과 해외 기상 자료를 이용하여 발전량을 예측하는 경우가 대부분을 차지하고 있는 실정이다. 본 논문에서는 기상정보를 활용한 발전량 예측 비교 연구를 위하여 현재 운영중인 2개 지역의 국내 태양광발전소를 대상지로 선정하였다. 발전량 예측 프로그램인 PVsyst를 활용하여 Meteonorm 7.1과 NASA-SSE의 해외 기상정보를 이용한 발전량 예측값과 국내 기상청 (Korea Meteorology Administration) 기상정보를 활용한 발전량 예측 정확성을 비교하였다. 추가적으로, 기상자료 비교 분석을 통한 발전량 예측 개선 방안을 연구하고, 최종적으로 실제 발전량과의 비교 분석을 통해 기후요소가 고려된 태양광 발전량 예측 수정 모델을 제시하였다.

철도분야 태양광 발전 적용 확대를 위한 설계 단계에서의 태양광 발전량 예측 연구 (A Study on Photovoltaic Power Generation Amount Forecast at Design Stage for Extended Application in the Field of Railways)

  • 유복종;이주
    • 한국철도학회논문집
    • /
    • 제20권2호
    • /
    • pp.182-189
    • /
    • 2017
  • 본 논문의 연구 목적은 저탄소 에너지화에 큰 비중을 차지하고 있는 태양광 발전 시스템의 철도분야 적용확대를 위한 설계 단계에서의 태양광 발전량 예측 연구로 실제 운영하고 있는 지평 태양광발전소를 대상으로 태양광 발전량 상용 예측 프로그램인 PVsyst를 활용하여 프로그램 기본 제공 NASA와 Meteonorm의 해외 기상정보를 이용한 연간 태양광 발전량 예측값과 기상청(KMA) 기상정보를 이용한 발전량 예측값을 비교하고, 한국전력거래소(KPX) 실제 발전량과의 비교 분석을 통해 태양광발전소 구축비의 적정성을 확보하여 철도분야의 태양광 발전 시스템 확대적용과 나아가 신기후 체제에 대응한 저탄소 에너지화에 기여하고자 한다.

태양에너지 예보기술 동향분석 (Trend Review of Solar Energy Forecasting Technique)

  • 전재호;이정태;김현구;강용혁;윤창열;김창기;김보영;김진영;박유연;김태현;조하나
    • 한국태양에너지학회 논문집
    • /
    • 제39권4호
    • /
    • pp.41-54
    • /
    • 2019
  • The proportion of solar photovoltaic power generation has steadily increased in the power trade market. Solar energy forecast is highly important for the stable trade of volatile solar energy in the existing power trade market, and it is necessary to identify accurately any forecast error according to the forecast lead time. This paper analyzes the latest study trend in solar energy forecast overseas and presents a consistent comparative assessment by adopting a single statistical variable (nRMSE) for forecast errors according to lead time and forecast technology.

마이크로인버터를 적용한 태양광 발전시스템 노후예측판단에 관한 연구 (Study on the Obsolescence Forecasting Judgment of PV Systems adapted Micro-inverters)

  • 박찬곤
    • 한국멀티미디어학회논문지
    • /
    • 제18권7호
    • /
    • pp.864-872
    • /
    • 2015
  • The purpose of this study is to design the algorithm, Predictive Service Component - PSC, for forecasting and judging obsolescence of solar system that is implemented based on the micro-inverter. PSC proposed in this study is suitable for monitoring of distributed power generation systems. It provides a diagnosis functionality to detect failures and anomaly events. It also can determine the aging of PV systems. The conclusion of this study shows the research and development of this kind of integrated system using PSC will be needed more and varied in the near future.

An Improved Photovoltaic System Output Prediction Model under Limited Weather Information

  • Park, Sung-Won;Son, Sung-Yong;Kim, Changseob;LEE, Kwang Y.;Hwang, Hye-Mi
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1874-1885
    • /
    • 2018
  • The customer side operation is getting more complex in a smart grid environment because of the adoption of renewable resources. In performing energy management planning or scheduling, it is essential to forecast non-controllable resources accurately and robustly. The PV system is one of the common renewable energy resources in customer side. Its output depends on weather and physical characteristics of the PV system. Thus, weather information is essential to predict the amount of PV system output. However, weather forecast usually does not include enough solar irradiation information. In this study, a PV system power output prediction model (PPM) under limited weather information is proposed. In the proposed model, meteorological radiation model (MRM) is used to improve cloud cover radiation model (CRM) to consider the seasonal effect of the target region. The results of the proposed model are compared to the result of the conventional CRM prediction method on the PV generation obtained from a field test site. With the PPM, root mean square error (RMSE), and mean absolute error (MAE) are improved by 23.43% and 33.76%, respectively, compared to CRM for all days; while in clear days, they are improved by 53.36% and 62.90%, respectively.

일반화 가법모형을 이용한 태양광 발전량 예측 알고리즘 (Solar Power Generation Prediction Algorithm Using the Generalized Additive Model)

  • 윤상희;홍석훈;전재성;임수창;김종찬;박철영
    • 한국멀티미디어학회논문지
    • /
    • 제25권11호
    • /
    • pp.1572-1581
    • /
    • 2022
  • Energy conversion to renewable energy is being promoted to solve the recently serious environmental pollution problem. Solar energy is one of the promising natural renewable energy sources. Compared to other energy sources, it is receiving great attention because it has less ecological impact and is sustainable. It is important to predict power generation at a future time in order to maximize the output of solar energy and ensure the stability and variability of power. In this paper, solar power generation data and sensor data were used. Using the PCC(Pearson Correlation Coefficient) analysis method, factors with a large correlation with power generation were derived and applied to the GAM(Generalized Additive Model). And the prediction accuracy of the power generation prediction model was judged. It aims to derive efficient solar power generation in the future and improve power generation performance.