• Title/Summary/Keyword: Photovoltaic performance

Search Result 860, Processing Time 0.033 seconds

The Comparative Study on the Characteristics of Thermoacoustic Laser According to Shapes of Resonance Tube (공명 튜브의 기하학적 형상에 따른 열음향 레이저의 특성 비교 연구)

  • Kim, Nam-Jin;An, Eoung-Jin;Oh, Won-Jong;Oh, Seung-Jin;Chun, Wongee
    • Journal of Energy Engineering
    • /
    • v.21 no.2
    • /
    • pp.133-137
    • /
    • 2012
  • Among various clean energy technologies, the solar energy technology has been widely used in various fields such as photovoltaic power generation and solar water/space heating. These days, special attention is drawn on its conversion into acoustic energy along with waste heat as a means to promote clean energy utilization. This work was carried out to investigate the possibility of converting solar energy into acoustic waves, especially, its performance characteristics for a single resonance tube (20.2 mm in ID). Variations are made for the stack length and its position as well as power supply. For a resonance tube of 200mm, an average sound pressure of 114.5 dB was measured with a stack length of 25.6mm at 5cm from the closed end. When the power supply was increased to 35W, an average sound pressure of 117.29 dB was detected with a frequency of 500Hz. There was an increase in frequency, 630 Hz (115.7dB), with a shorter resonance tube of 150mm.

Quantum Confinement Effect Induced by Thermal Treatment of CdSe Adsorbed on $TiO_2$ Nanostructure

  • Lee, Jin-Wook;Im, Jeong-Hyeok;Park, Nam-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.213-213
    • /
    • 2012
  • It has been known that quantum confinement effect of CdSe nanocrystal was observed by increasing the number of deposition cycle using successive ionic layer adsorption and reaction (SILAR) method. Here, we report on thermally-induced quantum confinement effect of CdSe at the given cycle number using spin-coating technology. A cation precursor solution containing $0.3\;M\;Cd(NO_3)_2{\cdot}4H_2O$ is spun onto a $TiO_2$ nanoparticulate film, which is followed by spinning an anion precursor solution containing $0.3\;M\;Na_2\;SeSO_3$ to complete one cycle. The cycle is repeated up to 10 cycles, where the spin-coated $TiO_2$ film at each cycle is heated at temperature ranging from $100^{\circ}C$ to $250^{\circ}C$. The CdSe-sensitized $TiO_2$ nanostructured film is contacted with polysulfide redox electrolyte to construct photoelectrochemical solar cell. Photovoltaic performance is significantly dependent on the heat-treatment temperature. Incident photon-to-current conversion efficiency (IPCE) increases with increasing temperature, where the onset of the absorption increases from 600 nm for the $100^{\circ}C$- to 700 nm for the $150^{\circ}C$- and to 800 nm for the $200^{\circ}C$- and the $250^{\circ}C$-heat treatment. This is an indicative of quantum size effect. According to Tauc plot, the band gap energy decreases from 2.09 eV to 1.93 eV and to 1.76 eV as the temperature increases from $100^{\circ}C$ to $150^{\circ}C$ and to $200^{\circ}C$ (also $250^{\circ}C$), respectively. In addition, the size of CdSe increases gradually from 4.4 nm to 12.8 nm as the temperature increases from $100^{\circ}C$ to $250^{\circ}C$. From the differential thermogravimetric analysis, the increased size in CdSe by increasing the temperature at the same deposition condition is found to be attributed to the increase in energy for crystallization with $dH=240cal/^{\circ}C$. Due to the thermally induced quantum confinement effect, the conversion efficiency is substantially improved from 0.48% to 1.8% with increasing the heat-treatment temperature from $100^{\circ}C$ to $200^{\circ}C$.

  • PDF

Development of Kesterite Cu2ZnSn(S1-x,Sex)4 (CZTSS)-Based Thin Film Solar Cells with In and Ga Free Absorber Materials (In과 Ga가 미포함 된 Kesterite Cu2ZnSn(S1-x,Sex)4 (CZTSS) 박막형 태양전지 개발 현황)

  • Shin, Seung-Wook;Han, Jun-Hee;Gang, Myeng-Gil;Yun, Jae-Ho;Lee, Jeong-Yong;Kim, Jin-Hyeok
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.259-273
    • /
    • 2012
  • Chalcogenide-based semiconductors, such as $CuInSe_2$, $CuGaSe_2$, Cu(In,Ga)$Se_2$ (CIGS), and CdTe have attracted considerable interest as efficient materials in thin film solar cells (TFSCs). Currently, CIGS and CdTe TFSCs have demonstrated the highest power conversion efficiency (PCE) of over 11% in module production. However, commercialized CIGS and CdTe TFSCs have some limitations due to the scarcity of In, Ga, and Te and the environmental issues associated with Cd and Se. Recently, kesterite CZTS, which is one of the In- and Ga- free absorber materials, has been attracted considerable attention as a new candidate for use as an absorber material in thin film solar cells. The CZTS-based absorber material has outstanding characteristics such as band gap energy of 1.0 eV to 1.5 eV, high absorption coefficient on the order of $10^4cm^{-1}$, and high theoretical conversion efficiency of 32.2% in thin film solar cells. Despite these promising characteristics, research into CZTS-based thin film solar cells is still incomprehensive and related reports are quite few compared to those for CIGS thin film solar cells, which show high efficiency of over 20%. The recent development of kesterite-based CZTS thin film solar cells is summarized in this work. The new challenges for enhanced performance in CZTS thin films are examined and prospective issues are addressed as well.

Effect of CdTe Deposition Conditions by Close spaced Sublimation on Photovoltaic Properties of CdS/CdTe Solar Cells (CdTe박막의 근접승화 제조조건에 따른 CdS/CdTe 태양전지의 광전압 특성)

  • Han, Byung-Wook;Ahn, Jin-Hyung;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.493-498
    • /
    • 1998
  • CdTe films were deposited by close spaced sublimation with various substrate temperatures, cell areas, and thicknesses of CdTe and ITO layers and their effects on the CdS/CdTe solar cells were investigated. The resistivity of CdTe layers employed in this study was 3$\times$ $10^{4}$$\Omega$cm For constant substrate temperature the optimum substrate ternperature for CdTe deposition was $600^{\circ}C$. To obtain larger grain size and more compact microstructure, CdTe film was initially deposited at 62$0^{\circ}C$, and then deposited at 54$0^{\circ}C$. The CdTe film was annealed at 62$0^{\circ}C$ and $600^{\circ}C$ sequentially to maintain the CdTe film quality. The photovoitaic cell efficiency improved by the "two-wave" process. For constant substrate temperature, the optimum thickness for CdTe was 5-6$\mu m$. Above 6$\mu m$ CdTe thickness, the bulk resistance of CdTe film degraded the cell performance. As the cell area increased the $V_{oc}$ remained almost constant, while $J_{sc}$ and FF strongly decreased because of the increase of lateral resistance of the ITO layer. The optimum thickness of the ITa layer in this study was 300~450nm. In this experiment we obtained the efficiency of 9.4% in the O.5cm' cells. The series resistance of the cell should be further reduced to increase the fill factor and improve the efficiency.

  • PDF

Optically Controlled Silicon MESFET Modeling Considering Diffusion Process

  • Chattopadhyay, S.N.;Motoyama, N.;Rudra, A.;Sharma, A.;Sriram, S.;Overton, C.B.;Pandey, P.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.196-208
    • /
    • 2007
  • An analytical model is proposed for an optically controlled Metal Semiconductor Field Effect Transistor (MESFET), known as Optical Field Effect Transistor (OPFET) considering the diffusion fabrication process. The electrical parameters such as threshold voltage, drain-source current, gate capacitances and switching response have been determined for the dark and various illuminated conditions. The Photovoltaic effect due to photogenerated carriers under illumination is shown to modulate the channel cross-section, which in turn significantly changes the threshold voltage, drainsource current, the gate capacitances and the device switching speed. The threshold voltage $V_T$ is reduced under optical illumination condition, which leads the device to change the device property from enhancement mode to depletion mode depending on photon impurity flux density. The resulting I-V characteristics show that the drain-source current IDS for different gate-source voltage $V_{gs}$ is significantly increased with optical illumination for photon flux densities of ${\Phi}=10^{15}\;and\;10^{17}/cm^2s$ compared to the dark condition. Further more, the drain-source current as a function of drain-source voltage $V_{DS}$ is evaluated to find the I-V characteristics for various pinch-off voltages $V_P$ for optimization of impurity flux density $Q_{Diff}$ by diffusion process. The resulting I-V characteristics also show that the diffusion process introduces less process-induced damage compared to ion implantation, which suffers from current reduction due to a large number of defects introduced by the ion implantation process. Further the results show significant increase in gate-source capacitance $C_{gs}$ and gate-drain capacitance $C_{gd}$ for optical illuminations, where the photo-induced voltage has a significant role on gate capacitances. The switching time ${\tau}$ of the OPFET device is computed for dark and illumination conditions. The switching time ${\tau}$ is greatly reduced by optical illumination and is also a function of device active layer thickness and corresponding impurity flux density $Q_{Diff}$. Thus it is shown that the diffusion process shows great potential for improvement of optoelectronic devices in quantum efficiency and other performance areas.

Reactive Power Variation Method for Anti-islanding Using Digital Phase-Locked-Loop (DPLL을 이용한 능동적 단독운전방지를 위한 무효전력변동법)

  • Lee, Ki-Ok;Yu, Byung-Gu;Yu, Gwon-Jong;Choi, Ju-Yeop;Choy, Ick
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.2
    • /
    • pp.64-69
    • /
    • 2008
  • As the grid-connected photovoltaic power conditioning systems (PVPCS) are installed in many residential areas, these have raised potential problems of network protection on electrical power system. One of the numerous problems is an Islanding phenomenon. There has been an argument that it may be a non-issue in practice because the probability of islanding is extremely low. However, there are three counter-arguments: First, the low probability of islanding is based on the assumption of 100% power matching between the PVPCS and the islanded local loads. In fact, an islanding can be easily formed even without 100% power matching (the power mismatch could be up to 30% if only traditional protections are used, e.g. under/over voltage/frequency). The 30% power-mismatch condition will drastically increase the islanding probability. Second, even with a larger power mismatch, the time for voltage or frequency to deviate sufficiently to cause a trip, plus the time required to execute a trip (particularly if conventional switchgear is required to operate), can easily be greater than the typical re-close time on the distribution circuit. Third, the low-probability argument is based on the study of PVPCS. Especially, if the output power of PVPCS equals to power consumption of local loads, it is very difficult for the PVPCS to sustain the voltage and frequency in an islanding. Unintentional islanding of PVPCS may result in power-quality issues, interference to grid-protection devices, equipment damage, and even personnel safety hazards. Therefore the verification of anti-islanding performance is strongly needed. In this paper, improved RPV method is proposed through considering power quality and anti-islanding capacity of grid-connected single-phase PVPCS in IEEE Std 1547 ("Standard for Interconnecting Distributed Resources to Electric Power Systems"). And the simulation results are verified.

Synthesis and Characterization of π-Conjugated Polymer Based on Phthalimide Derivative and its Application for Polymer Solar Cells (프탈이미드 유도체를 기본으로 하는 공액고분자의 합성과 특성, 그리고 태양전지의 적용)

  • Do, Thu Trang;Ha, Ye Eun;Kim, Joo Hyun
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.694-701
    • /
    • 2013
  • A new copolymer named T-TI24T (poly((5,5-(2-butyl-5,6-bisdecyloxy-4,7-di-thiophen-2-yl-isoindole-1,3-dione))- alt-(2,5-thiophene))) based on phthalimide derivative and thiophene is synthesized by the Stille-coupling reaction. The polymer shows relatively high number average molecular weight of 86500 g/mol with good solubility in common organic solvents such as chloroform, 1,2-dichlorobenzene, and toluene and is thermally stable up to $380^{\circ}C$. Besides, it possesses a relatively low highest occupied molecular orbital (HOMO) energy level of -5.33 eV, promising the high open circuit voltage ($V_{oc}$) for photovoltaic applications. Active layer solution of polymer T-TI24T-as a donor and (6)-1-(3-(methoxycarbonyl)- {5}-1-phenyl[5,6]-fullerene (PCBM)-as an acceptor in different weight ratios is applied to fabricate the polymer solar cell devices. The ratio of polymer/PCBM affects the solar cell efficiency and the best performance exhibits in the device with polymer/PCBM = 1:3 (w/w), which shows a power conversion efficiency (PCE) of 0.199% and a $V_{oc}$ of 0.99 V, respectively. Even though the device shows the very low PCE, the $V_{oc}$ is higher than that of well known bulk heterojunction type solar cell based on P3HT:PC61BM (c.a. 0.5 V).

Multiple Linear Regression Analysis of PV Power Forecasting for Evaluation and Selection of Suitable PV Sites (태양광 발전소 건설부지 평가 및 선정을 위한 선형회귀분석 기반 태양광 발전량 추정 모델)

  • Heo, Jae;Park, Bumsoo;Kim, Byungil;Han, SangUk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.6
    • /
    • pp.126-131
    • /
    • 2019
  • The estimation of available solar energy at particular locations is critical to find and assess suitable locations of PV sites. The amount of PV power generation is however affected by various geographical factors (e.g., weather), which may make it difficult to identify the complex relationship between affecting factors and power outputs and to apply findings from one study to another in different locations. This study thus undertakes a regression analysis using data collected from 172 PV plants spatially distributed in Korea to identify critical weather conditions and estimate the potential power generation of PV systems. Such data also include solar radiation, precipitation, fine dust, humidity, temperature, cloud amount, sunshine duration, and wind speed. The estimated PV power generation is then compared to the actual PV power generation to evaluate prediction performance. As a result, the proposed model achieves a MAPE of 11.696(%) and an R-squred of 0.979. It is also found that the variables, excluding humidity, are all statistically significant in predicting the efficiency of PV power generation. According, this study may facilitate the understanding of what weather conditions can be considered and the estimation of PV power generation for evaluating and determining suitable locations of PV facilities.

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

Application of CMP Process to Improving Thickness-Uniformity of Sputtering-deposited CdTe Thin Film for Improvement of Optical Properties (스퍼터링 증확 CdTe 박막의 두께 불균일 현상 개선을 위한 화학적기계적연마 공정 적용 및 광특성 향상)

  • Park, Ju-Sun;Lim, Chae-Hyun;Ryu, Seung-Han;Myung, Kuk-Do;Kim, Nam-Hoon;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.375-375
    • /
    • 2010
  • CdTe as an absorber material is widely used in thin film solar cells with the heterostructure due to its almost ideal band gap energy of 1.45 eV, high photovoltaic conversion efficiency, low cost and stable performance. The deposition methods and preparation conditions for the fabrication of CdTe are very important for the achievement of high solar cell conversion efficiency. There are some rearranged reports about the deposition methods available for the preparation of CdTe thin films such as close spaced sublimation (CSS), physical vapor deposition (PVD), vacuum evaporation, vapor transport deposition (VTD), closed space vapor transport, electrodeposition, screen printing, spray pyrolysis, metalorganic chemical vapor deposition (MOCVD), and RF sputtering. The RF sputtering method for the preparation of CdTe thin films has important advantages in that the thin films can be prepared at low growth temperatures with large-area deposition suitable for mass-production. The authors reported that the optical and electrical properties of CdTe thin film were closely connected by the thickness-uniformity of the film in the previous study [1], which means that the better optical absorbance and the higher carrier concentration could be obtained in the better condition of thickness-uniformity for CdTe thin film. The thickness-uniformity could be controlled and improved by the some process parameters such as vacuum level and RF power in the sputtering process of CdTe thin films. However, there is a limitation to improve the thickness-uniformity only in the preparation process [1]. So it is necessary to introduce the external or additional method for improving the thickness-uniformity of CdTe thin film because the cell size of thin film solar cell will be enlarged. Therefore, the authors firstly applied the chemical mechanical polishing (CMP) process to improving the thickness-uniformity of CdTe thin films with a G&P POLI-450 CMP polisher [2]. CMP process is the most important process in semiconductor manufacturing processes in order to planarize the surface of the wafer even over 300 mm and to form the copper interconnects with damascene process. Some important CMP characteristics for CdTe were obtained including removal rate (RR), WIWNU%, RMS roughness, and peak-to-valley roughness [2]. With these important results, the CMP process for CdTe thin films was performed to improve the thickness-uniformity of the sputtering-deposited CdTe thin film which had the worst two thickness-uniformities of them. Some optical properties including optical transmittance and absorbance of the CdTe thin films were measured by using a UV-Visible spectrophotometer (Varian Techtron, Cary500scan) in the range of 400 - 800 nm. After CMP process, the thickness-uniformities became better than that of the best condition in the previous sputtering process of CdTe thin films. Consequently, the optical properties were directly affected by the thickness-uniformity of CdTe thin film. The absorbance of CdTe thin films was improved although the thickness of CdTe thin film was not changed.

  • PDF